Archivo de la categoría: Neurología

Investigadores controlan circuitos cerebrales a distancia usando luz infrarroja

Imagine el cerebro como una central de conmutación gigante cubierta con miles de botones, perillas, diales y palancas que controlan aspectos de nuestro pensamiento, emociones, comportamiento y memoria.

Durante más de un siglo, los neurocientíficos han estado encendiendo y apagando metódicamente estos interruptores, solos o en combinación, para tratar de comprender cómo funciona la máquina en su conjunto. Pero esto es más fácil decirlo que hacerlo. Los circuitos celulares que controlan la mente y el comportamiento se enredan en la masa opaca y gelatinosa de nuestro tejido cerebral y no vienen con prácticos interruptores de encendido/apagado para facilitar la ingeniería inversa.

Ahora, los científicos del Instituto de Neurociencias Wu Tsai de la Universidad de Stanford han desarrollado la primera técnica no invasiva para controlar circuitos cerebrales específicos en el comportamiento de animales a distancia. La herramienta tiene el potencial de resolver una de las mayores necesidades insatisfechas en neurociencia: una forma de probar de manera flexible las funciones de células cerebrales particulares y circuitos profundos en el cerebro durante el comportamiento normal, como ratones que socializan libremente entre sí.


La investigación fue publicada en marzo de 2022 en Nature Biomedical Engineering por Guosong Hong y sus colegas de Stanford y la Universidad Tecnológica Nanyang de Singapur. Hong es un becario de la facultad del Instituto de Neurociencias Wu Tsai y profesor asistente de ciencia e ingeniería de materiales en la Escuela de Ingeniería de Stanford que utiliza su experiencia en química y ciencia de materiales para diseñar herramientas y materiales biocompatibles para avanzar en el estudio del cerebro.

La técnica recientemente publicada se basa en los cimientos establecidos por la optogenética, una técnica desarrollada por primera vez en Stanford por Karl Deisseroth, afiliado de Wu Tsai Neuro, y colaboradores que introduce proteínas de algas sensibles a la luz en las neuronas para permitir que los investigadores las activen o desactiven en respuesta a diferentes colores de luz.

«La optogenética ha sido una herramienta transformadora en la neurociencia, pero existen limitaciones sobre lo que se puede hacer con las técnicas existentes, en parte debido a su dependencia de la luz en el espectro visible», dijo Hong. «El cerebro es bastante opaco a la luz visible, por lo que llevar la luz a las células que desea estimular normalmente requiere implantes ópticos invasivos que pueden causar daños en los tejidos y conexiones de fibra óptica montadas en el cráneo que dificultan el estudio de muchos tipos de comportamiento natural. »

Pensando como científico de materiales sobre las formas de superar estos desafíos, Hong reconoció que los tejidos biológicos, incluido el cerebro e incluso el cráneo, son esencialmente transparentes a la luz infrarroja, lo que podría hacer posible que la luz entre mucho más profundo en el cerebro.

Dado que las herramientas optogenéticas existentes no responden a la luz infrarroja, el equipo de Hong recurrió a una molécula que evolucionó para detectar la otra forma del infrarrojo: el calor. Al equipar de forma artificial neuronas específicas en el cerebro del ratón con una molécula sensible al calor llamada TRPV1, su equipo descubrió que era posible estimular las células modificadas al hacer brillar luz infrarroja a través del cráneo y el cuero cabelludo a una distancia de hasta un metro.

TRPV1 es el sensor de calor molecular que nos permite sentir el dolor relacionado con el calor, así como el ardor picante de un pimiento, cuyo descubrimiento condujo al Premio Nobel de Medicina 2021. Un receptor similar les da a las serpientes de cascabel y otras víboras de pozo la «visión de calor» que les permite cazar presas de sangre caliente en la oscuridad, y un estudio reciente logró darles a los ratones la capacidad de ver en el espectro infrarrojo al agregar TRPV1 a sus células cónicas retinales. .

La nueva técnica también se basa en una molécula «transductora» diseñada que se puede inyectar en regiones específicas del cerebro para absorber y amplificar la luz infrarroja que penetra a través del tejido cerebral. Estas partículas a nanoescala, denominadas MINDS (por Macromolecular Infrared Nanotransducers for Deep-brain Stimulation o «nanotransductores infrarrojos macromoleculares para la estimulación cerebral profunda» en español), funcionan un poco como la melanina en nuestra piel que absorbe los dañinos rayos UV del sol, y están elaborados a partir de polímeros biodegradables que se utilizan para producir orgánicos células solares y LED.

«Primero intentamos estimular las células solo con los canales TRPV1 y no funcionó en absoluto», dijo Hong. «Resulta que las serpientes de cascabel tienen una forma mucho más sensitiva de detectar señales infrarrojas de lo que podríamos manejar en el cerebro del ratón. Afortunadamente, teníamos la ciencia de los materiales para ayudarnos».

El equipo de Hong demostró por primera vez su técnica agregando canales TRPV1 a las neuronas en un lado de la corteza motora del ratón, una región que orquesta los movimientos del cuerpo, e inyectando moléculas MINDS en la misma región. Al principio, los ratones exploraron sus recintos al azar, pero cuando los investigadores encendieron una luz infrarroja sobre el recinto, los ratones inmediatamente comenzaron a caminar en círculos, impulsados por la estimulación unilateral de su corteza motora.

«Ese fue un gran momento cuando supimos que esto iba a funcionar», dijo Hong. «Por supuesto, fue solo el comienzo de validar y probar lo que esta tecnología podía hacer, pero a partir de ese momento estaba seguro de que teníamos algo».

En otro experimento clave, los investigadores demostraron que MINDS podría permitir la estimulación infrarroja de las neuronas a través de toda la profundidad del cerebro del ratón. Insertaron canales TRPV1 en las neuronas que expresan dopamina de los centros de recompensa del cerebro, que se encuentran cerca de la base del cerebro en ratones, seguidos de una inyección de MINDS en la misma región. Luego colocaron una luz infrarroja enfocada sobre uno de los tres brazos de un laberinto de brazos radiales estándar y mostraron que los ratones se volvieron «adictos» a la luz infrarroja invisible que hacía cosquillas en sus neuronas de dopamina, pasando casi todo el tiempo en el laberinto bajo sus haces.

Este experimento demostró que la nueva técnica hace posible estimular las neuronas en cualquier parte del cerebro a través del cuero cabelludo y el cráneo intactos, casi sin la dispersión de la luz que lo haría imposible con la luz en el espectro visual. Sorprendentemente, esto funcionó incluso cuando el haz de luz infrarroja se colocó hasta un metro por encima de las cabezas de los animales.

Hong ve aplicaciones inmediatas de la técnica para el creciente movimiento en neurociencia para estudiar los circuitos cerebrales involucrados en el comportamiento social natural en ratones para comprender mejor los sistemas que subyacen a la cognición social en humanos.

«Al igual que nosotros, los ratones son una especie social, pero estudiar el comportamiento natural de un animal dentro de un grupo social es un desafío con una cuerda de fibra óptica montada en la cabeza», dijo Hong. «Este enfoque hace posible por primera vez modular neuronas y circuitos específicos en animales que se comportan libremente. Uno podría hacer brillar una luz infrarroja invisible sobre un recinto con ratones coalojados para estudiar las contribuciones de células y circuitos particulares al comportamiento de un animal dentro del entorno de un grupo social.»

Hong y sus colaboradores continúan refinando la técnica para que sea más simple y fácil de implementar, dijo. «En el futuro, nos gustaría combinar nuestro enfoque actual de dos etapas en una sola máquina molecular, tal vez mediante la codificación de algún pigmento absorbente de infrarrojos en las propias neuronas que expresan TRP».

El trabajo es uno de varios enfoques en los que Hong está involucrado para hacer posible que los investigadores, y quizás algún día los médicos, modulen de forma no invasiva los circuitos neuronales en todo el cerebro. Por ejemplo, Hong y sus colegas también están desarrollando microesferas nanoscópicas que pueden convertir haces de ultrasonido enfocados en luz, y que pueden inyectarse directamente en el torrente sanguíneo, lo que hace posible apuntar optogenéticamente a células en cualquier parte del cerebro y cambiar este objetivo a voluntad dentro de un solo experimento.

«Los enfoques convencionales de neuromodulación nos dieron la capacidad de activar algunos de los interruptores a la vez en el cerebro para ver qué hacen los diferentes circuitos», dijo Hong. «Nuestro objetivo es llevar estas técnicas un paso más allá para brindarnos un control preciso sobre todo el panel de control al mismo tiempo».

Esta investigación fue financiada por una subvención del Instituto de Neurociencias Wu Tsai en Stanford, Stanford Bio-X y una beca interdisciplinaria de posgrado de Stanford; por una subvención de puesta en marcha de la Universidad Tecnológica de Nanyang y el Fondo de Investigación Académica del Ministerio de Educación de Singapur; y por la Fundación Nacional de Ciencias de EE. UU. (NSF), el Instituto Nacional sobre el Envejecimiento de los NIH, la Fundación Rita Allen y la Fundación para la Atrofia Muscular Espinal.

________________________________________

Fuente de la historia: Materiales proporcionados por la Escuela de Ingeniería de la Universidad de Stanford . Original escrito por Nicholas Weiler.
Referencia de la publicación: Xiang Wu, Yuyan Jiang, Nicholas J. Rommelfanger, Fan Yang, Qi Zhou, Rongkang Yin, Junlang Liu, Sa Cai, Wei Ren, Andrew Shin, Kyrstyn S. Ong, Kanyi Pu, Guosong Hong. Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nature Biomedical Engineering, 2022; DOI: 10.1038/s41551-022-00862-w

Noticias relacionadas:

Los científicos identifican las neuronas en el cerebro que impulsan la competencia y el comportamiento social dentro de los grupos

En ratones, la clasificación social en un grupo se vinculó con los resultados de la competencia, y ciertas neuronas en el cerebro almacenaron esta información de clasificación social para informar las decisiones. La manipulación de la actividad de estas neuronas podría aumentar o disminuir el esfuerzo competitivo de un animal y, por lo tanto, controlar su capacidad para competir exitosamente con otros.

Una nueva investigación en ratones ha identificado neuronas en el cerebro que influyen en las interacciones competitivas entre individuos y que juegan un papel fundamental en la configuración del comportamiento social de los grupos. Publicado en Nature por un equipo dirigido por investigadores del Hospital General de Massachusetts (MGH), los hallazgos serán útiles no solo para los científicos interesados en las interacciones humanas, sino también para aquellos que estudian condiciones neurocognitivas como el trastorno del espectro autista y la esquizofrenia, que se caracterizan por alteraciones del comportamiento social.


«Las interacciones sociales en humanos y animales ocurren más comúnmente en grupos grandes, y estas interacciones grupales desempeñan un papel destacado en la sociología, la ecología, la psicología, la economía y las ciencias políticas», dice el autor principal S. William Li, estudiante de MD/PhD en MGH. «Sigue sin entenderse bien qué procesos en el cerebro impulsan el complejo comportamiento dinámico de los grupos sociales, en parte porque la mayoría de las investigaciones neurocientíficas hasta ahora se han centrado en los comportamientos de individuos que interactúan en pares. Aquí, pudimos estudiar el comportamiento de los grupos por desarrollando un paradigma en el que grandes cohortes de ratones fueron rastreados de forma inalámbrica a través de miles de interacciones únicas de grupos competitivos».

Li y sus colegas encontraron que la clasificación social de los animales en el grupo estaba estrechamente relacionada con los resultados de la competencia, y al examinar grabaciones de neuronas en el cerebro de ratones en tiempo real, el equipo descubrió que las neuronas en la región cingulada anterior del el cerebro almacena esta información de clasificación social para informar las próximas decisiones.
«En conjunto, estas neuronas tenían representaciones notablemente detalladas del comportamiento del grupo y su dinámica cuando los animales competían entre sí por la comida, además de información sobre los recursos disponibles y el resultado de sus interacciones pasadas», explica el autor principal, Ziv M. Williams, MD., oncólogo neuroquirúrgico del MGH. «Juntas, estas neuronas podrían incluso predecir el éxito futuro del propio animal mucho antes del inicio de la competencia, lo que significa que probablemente impulsaron el comportamiento competitivo de los animales en función de con quién interactuaban».

La manipulación de la actividad de estas neuronas, por otro lado, podría aumentar o disminuir artificialmente el esfuerzo competitivo de un animal y, por lo tanto, controlar su capacidad para competir con éxito contra otros.

«En otras palabras, podríamos ajustar hacia arriba y hacia abajo el impulso competitivo del animal y hacerlo de forma selectiva sin afectar otros aspectos de su comportamiento, como la simple velocidad o la motivación», dice Williams.

Los hallazgos indican que el éxito al competir no es simplemente un producto de la aptitud física o la fuerza de un animal, sino que está fuertemente influenciado por señales en el cerebro que afectan el impulso competitivo. «Estas neuronas únicas pueden integrar información sobre el entorno del individuo, la configuración del grupo social y los recursos de recompensa para calcular cómo comportarse mejor en condiciones específicas», dice Li.

Además de proporcionar información sobre el comportamiento grupal y la competencia en diferentes situaciones sociológicas o económicas y otros entornos, la identificación de las neuronas que controlan estas características puede ayudar a los científicos a diseñar experimentos para comprender mejor los escenarios en los que el cerebro está conectado de manera diferente.

«Muchas condiciones se manifiestan en un comportamiento social aberrante que abarca muchas dimensiones, incluida la capacidad de uno para comprender las normas sociales y mostrar acciones que pueden encajar en la estructura dinámica de los grupos sociales», dice Williams. «Desarrollar una comprensión del comportamiento grupal y la competencia tiene relevancia para estos trastornos neurocognitivos, pero hasta ahora, cómo sucede esto en el cerebro ha permanecido en gran medida sin explorar».

Los coautores son Omer Zeliger, Leah Strahs, Raymundo Báez-Mendoza, Lance M. Johnson y Adian McDonald Wojciechowski.

El financiamiento para esta investigación fue proporcionado por los Institutos Nacionales de Salud, la Fundación de Ciencias del Autismo, un Fondo MGH-ECOR para la Beca de Descubrimiento Médico y una Subvención para Jóvenes Investigadores NARSAD de la Fundación de Investigación del Cerebro y el Comportamiento.

________________________________________
Fuente de la historia:
Material proporcionados por el Hospital General de Massachusetts. «Los científicos identifican las neuronas en el cerebro que impulsan la competencia y el comportamiento social dentro de los grupos». ScienceDaily, 16 de marzo de 2022. www.sciencedaily.com/releases/2022/03/220316173259.htm
________________________________________
Referencia de la publicación:
S. William Li, Omer Zeliger, Leah Strahs, Raymundo Báez-Mendoza, Lance M. Johnson, Aidan McDonald Wojciechowski, Ziv M. Williams. Neuronas frontales que impulsan el comportamiento competitivo y la ecología de los grupos sociales. Nature, 2022; DOI: 10.1038/s41586-021-04000-5
________________________________________
Noticias relacionadas:

Crecen y se conectan con éxito nódulos de neuronas humanas implantados en ratas

Los organoides desarrollaron filamentos de nuevas células, e incluso mostraron signos de actividad al aplicar luz a los ojos de la rata, indicación de que esos organoides se habían conectado a las neuronas del animal

En un experimento, implantaron «organoides» cerebrales diminutos en ratas, que son grupos de neuronas cultivadas a partir de células madre humanas.

La noticia proviene de Stat, y parece que dos equipos diferentes han logrado integrar las células del cerebro humano en los cerebros de las ratas.


Una suspensión de células madre en nitrógeno líquido

Los organoides comenzaron a estirar filamentos de nuevas células, e incluso mostraron signos de actividad cuando los investigadores aplicaron iluminación a los ojos de la rata, una señal de que estaban funcionalmente conectados a las neuronas propias de las ratas. Estos organoides, de un tamaño de unos 2 milímetros, sobrevivieron meses, y mostraron un extendido crecimiento de axones humanos hacia el interior del cerebro de la rata. Algunos axones crecieron hasta 1,5 milímetros, conectándose al corpus callosum, un bloque de neuronas que unen los hemisferios izquierdo y derecho del cerebro.

Este un paso adelante en el nuevo campo de los organoides, una disciplina de rápido progreso, que utiliza porciones de tejido que crecen fuera del cuerpo, y que de alguna manera se parecen a nuestros propios órganos. Los investigadores están comenzando a usar organoides para realizar pruebas de partes del cuerpo humano que no podrían hacer en órganos que todavía están encerrados dentro de nosotros.

En el caso de los organoides cerebrales esto incluye estudios sobre el Alzheimer, microcefalia, abuso de sustancias y desarrollo cerebral.

Se han usado otros tipos de organoides para evaluar tratamientos contra el cáncer y nuevos tipos de medicamentos, estudiar trastornos genéticos y mucho más.





Cuestiones de ética

El trabajo de este grupo de investigadores, dirigidos por el Dr. Isaac Chen, un neurocirujano del la Universidad de Pennsilvania, ha generado debate. Él y sus colegas discutieron la ética de implantar organoides cerebrales humanos en ratas, incluso si los animales podrían volverse demasiado humanos. «Algo de lo que la gente predice aún es ciencia ficción», dijo. «En este momento, los organoides son tan crudos que probablemente disminuimos las funciones cerebrales de las ratas.

Los expertos en ética sostienen que el que «no sea un problema ahora» no significa «nunca será un problema». Una preocupación planteada por los implantes de organoides cerebrales humanos «es que la integración funcional [de los organoides] en el sistema nervioso central de los animales puede alterar en principio el comportamiento o las necesidades de los animales», dijo el bioético Jonathan Kimmelman de la Universidad McGill en Montreal. «La tarea, entonces, es monitorear cuidadosamente si ocurren tales alteraciones». Si el implante humano le da a un animal «mayor capacidad mental o mental», añadió, podría sufrir más.

¿Se sentiría como un humano atrapado en el cuerpo de un roedor? Debido a que los experimentos de Salk y Penn utilizaron roedores adultos, sus cerebros ya no se estaban desarrollando, a diferencia del caso de que los implantes se hubieran realizado con cerebros de roedores fetales. «Es difícil imaginar cómo podrían surgir capacidades cognitivas similares a las humanas, o conciencia, en tales circunstancias», dijo Kimmelman, refiriéndose a los implantes en un cerebro de roedores adultos. Chen estuvo de acuerdo: dijo que su experimento «conlleva menos riesgo de crear animales con mayor ‘poder cerebral’ de lo normal» porque el organoide humano entra en «una región específica de un cerebro ya desarrollado».

La creencia de que hablar de conciencia está fuera de tema, de hecho, es cuestión de debate. Un organoide necesitaría estar mucho más avanzado que lo que lo están hoy para experimentar conciencia, dijo Koch del Instituto Allen, debería incluir conexiones neurales densas, capas distintas y otra neuro-arquitectura. Pero si ocurren esos y otros avances, dijo, «entonces la pregunta es muy pertinente: ¿este trozo de corteza siente algo?»

Cuando se le preguntó si los organoides cerebrales pueden alcanzar la conciencia sin órganos sensoriales y otros medios de percibir el mundo, Koch dijo que experimentarían algo diferente a lo que hacen las personas y otros animales: «Surge la pregunta, ¿de qué estaría consciente?»

Muchos científicos que trabajan con organoides cerebrales creen que las estructuras siempre serán limitadas en complejidad porque no están conectadas al mundo exterior. «Esto no es un cerebro que crece en un plato», dijo Penn’s Song. «Somos lo que somos porque tenemos experiencias, y los organoides cerebrales no tienen entradas sensoriales».

Debido a la competencia, e incluso el secretismo en torno a la investigación de organoides cerebrales, varios líderes en el campo no sabían lo que otros habían logrado hasta que lo describió STAT. Contrariamente a la suposición de Song, por ejemplo, otro científico líder supuestamente ha conectado organoides cerebrales en una placa de Petri a las células de la retina, que perciben la luz, y por lo tanto producen visión.

«Es difícil saber el significado de eso», dijo un erudito con quien el científico discutió el trabajo de la retina. «¿Qué experiencia tiene el organoide, y cómo lo averiguaremos?»

Otro paso que promete producir organoides más grandes, y más cerebrales, es fusionar varios entre sí. En mayo, científicos dirigidos por Jürgen Knoblich del Instituto de Biotecnología Molecular de Viena, que dirigió la investigación original que creó organoides cerebrales 3-D, informaron la fusión de un organoide que imita la parte superior del cerebro anterior humano con uno que imita el fondo, y conectó neuronas que avanzan de uno a otro, un gran paso hacia lograr «complejas interacciones entre diferentes regiones del cerebro», informaron él y sus colegas.

Aun cuando los organoides cerebrales «se conectan como Legos», dijo Song, «todavía tenemos el problema con el tamaño»: sin un suministro de sangre, las estructuras no pueden crecer lo suficiente como para imitar un cerebro completamente desarrollado.

Pero esa barrera, también, es probable que caiga. En septiembre, George Church, de la Facultad de Medicina de Harvard (fue él quien retrasó el intento de administrarle a los organoides cerebrales un suministro de sangre) dijo en una pequeña reunión en el MIT que en su laboratorio había vascularizado organoides cerebrales. En contraste con los experimentos de Salk y Penn, que lograron eso a través del trasplante en cerebros de roedores, los organoides de Church están creciendo en platos de laboratorio. Él y sus colegas desarrollaron la vasculatura con células productoras de vasos sanguíneos (endoteliales). «Podemos generar organoides cerebrales con tejido endotelial integrado, este tejido forma tubos, y podemos inducir que estos tubos germinen» en el caldo de nutrientes en el que crecen los organoides cerebrales, dijo John Aach, genetista del laboratorio de Church.

«El siguiente paso es lograr que los fluidos fluyan a través de estos tubos», entregando oxígeno y nutrientes a los organoides y conectar los tubos a una bomba parecida a un corazón, dijo Aach. De lo contrario, «no puedes cultivarlos muy grandes y te verás obstaculizado al intentar que el organoide desarrolle tipos de células más maduras».

Fuente: STAT y otros medios. Aportado por Eduardo J. Carletti

Más información: