Utilizando varios instrumentos instalados en el VLT, el equipo obtuvo observaciones detalladas de la luz procedente de la enana blanca y del material circundante durante un período de doce años, lo que demostró que estos sistemas tienen forma de disco y revelan muchas estructuras que no se pueden detectar en una sola instantánea
Un equipo internacional de astrónomos ha estudiado, por primera vez y con gran detalle, los restos de la fatal interacción entre una estrella muerta y su cena de asteroides. Utilizando el Very Large Telescope, instalado en el observatorio Paranal de ESO (Chile), nos han adelantado lo que, en un futuro lejano, será el destino del Sistema Solar.
El equipo, dirigido por Christopher Manser, un estudiante de doctorado de la Universidad de Warwick (Reino Unido), utilizó datos obtenidos por el Very Large Telescope (VLT) de ESO y por otros observatorios para estudiar los restos de un asteroide esparcidos en los alrededores de un remanente estelar, una enana blanca llamada SDSS J1228+1040 [1].
Esta impresión artística muestra cómo un asteroide destrozado por la fuerte gravedad de una enana blanca ha formado un anillo de partículas de polvo y escombros que orbitan alrededor de un calcinado núcleo estelar, del tamaño de la Tierra, llamado SDSS J1228+1040. Las observaciones, realizadas a lo largo de doce años con el Very Large Telescope de ESO, han detectado el gas producido por las colisiones en el disco, revelando la presencia de un estrecho arco brillante
Utilizando varios instrumentos, incluyendo los espectrógrafo UVES (Ultraviolet and Visual Echelle Spectrograph) y X-shooter, ambos instalados en el VLT, el equipo obtuvo observaciones detalladas de la luz procedente de la enana blanca y del material circundante durante un período de doce años (algo sin precedentes), que abarcó del año 2003 al 2015. Este tipo de observaciones, que duran períodos de años, son necesarias para poner a prueba el sistema desde múltiples puntos de vista [2].
Tal y como explica el autor principal, Christopher Manser, «La imagen que obtenemos de los datos procesados nos muestra que estos sistemas realmente tienen forma de disco y revela muchas estructuras que no podemos detectar en una sola instantánea«.
El equipo utilizó una técnica llamada tomografía Doppler —similar, en principio, a las exploraciones tomográficas médicas del cuerpo humano— que les permitió trazar, por primera vez y con mucho detalle, la estructura de los brillantes restos gaseosos del “almuerzo” de la estrella muerta J1228+1040 orbitando a su alrededor.
Mientras que las estrellas grandes —más masiva que unas diez veces la masa del Sol— sufren un clímax espectacularmente violento al estallar como supernovas al final de sus vidas, las estrellas más pequeñas se ahorran destinos tan dramáticos. Cuando estrellas como el Sol llegan al final de sus vidas tras agotar su combustible, se expanden como gigantes rojas y, posteriormente, expulsan sus capas exteriores al espacio. Todo lo que queda es el núcleo denso y caliente de la antigua estrella, una enana blanca.
Pero, ¿sobrevivirían a esta prueba de fuego los planetas, los asteroides y otros cuerpos en un sistema de este tipo? ¿Qué quedaría? Las nuevas observaciones ayudan a responder a estas preguntas.
Es raro que una enana blanca esté rodeada por un disco de material gaseoso que la orbite (hasta ahora sólo se habían descubierto siete). El equipo llegó a la conclusión de que un asteroide se había desviado, acercándose peligrosamente a la estrella muerta y, debido a las potentes fuerzas de marea, acabó destrozado y formando el disco de material que vemos ahora.
El disco se formó de manera similar a los fotogénicos anillos que vemos alrededor de planetas más cercanos a nosotros, tales como Saturno. Sin embargo, mientras que J1228+1040 es más de siete veces más pequeño en diámetro que el planeta anillado, tiene una masa más de 2.500 veces mayor. El equipo también detectó que la distancia entre la enana blanca y su disco es muy distinta: Saturno y sus anillos cabrían perfectamente en el espacio que hay entre la estrella y su disco [3].
Una ilustración del disco de escombros alrededor de la enana blanca SDSS J1228+1040 (izquierda) en la misma escala que Saturno y sus anillos (derecha). Mientras que la enana blanca en SDSS J1228+1040 tiene un diámetro casi siete veces más pequeño que Saturno, su masa es unas 2.500 veces mayor
Este nuevo estudio a largo plazo, llevado a cabo con el VLT, ha permitido al equipo ver el disco de precesión bajo la influencia del potente campo gravitacional de la enana blanca. También han visto que el disco está un poco desequilibrado y aún no es circular.
«Cuando descubrimos este disco de escombros orbitando alrededor de la enana blanca en 2006, no imaginábamos los exquisitos detalles que ahora son visibles en esta imagen, construida con doce años de datos. Definitivamente, la espera mereció la pena«, añade Boris Gänsicke, coautor del estudio.
Este gráfico es un tipo inusual de imagen que, en lugar de mostrar su posición, muestra las velocidades del gas en el disco que rodea a la enana blanca SDSS J1228+1040. Fue trazado a partir de observaciones realizadas con el Very Large Telescope durante un período de doce años y aplicando un método llamado tomografía Doppler. Los círculos discontinuos corresponden a material en órbitas circulares a dos distancias diferentes de la estrella. Aparece de adentro para afuera porque el material se mueve más rápido en órbitas cercanas. Crédito: University of Warwick/C. Manser/ESO
Remanentes como J1228+1040 pueden proporcionar pistas fundamentales para entender los ambientes que se generan cuando las estrellas llegan al final de sus vidas. Esto puede ayudar a los astrónomos a entender los procesos que tienen lugar en sistemas exoplanetarios e incluso predecir el destino del Sistema Solar cuando el Sol se enfrente a su desaparición dentro de unos 7.000 millones de años.
Notas
[1] El nombre completo de la enana blanca es SDSS J122859.93+104032.9.
[2] El equipo identificó la inconfundible firma espectral en forma de tridente del calcio ionizado, llamado el triplete de calcio (Ca II). La diferencia entre las longitudes de onda observadas y las conocidas de estas tres líneas puede determinar la velocidad del gas con una precisión considerable.
[3] Aunque el disco alrededor de esta enana blanca es mucho más grande que el sistema del anillo de Saturno en el Sistema Solar, es pequeño en comparación con los discos de escombros que forman planetas alrededor de estrellas jóvenes.
Información adicional
Este trabajo de investigación se ha presentado en el artículo científico titulado “Doppler-imaging of the planetary debris disc at the white dwarf SDSS J122859.93+104032.9”, por C. Manser et al., que aparece en la revista Monthly Notices of the Royal Astronomical Society.
El equipo está formado por Christopher Manser (Universidad de Warwick, Reino Unido); Boris Gaensicke (Universidad de Warwick); Tom Marsh (Universidad de Warwick); Dimitri Veras (Universidad de Warwick, Reino Unido); Detlev Koester (Universidad de Kiel, Alemania); Elmé Breedt (Universidad de Warwick); Anna Pala (Universidad de Warwick); Steven Parsons (Universidad de Valparaiso, Chile) y John Southworth (Universidad Keele, Reino Unido).
ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de dieciséis países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Además, cerca de Paranal, en Cerro Armazones, ESO está construyendo el E-ELT (European Extremely Large Telescope), el telescopio óptico y de infrarrojo cercano de 39 metros que llegará a ser “el ojo más grande del mundo para mirar el cielo”.
Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.
El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.
Enlaces
Contactos
J. Miguel Mas Hesse
Centro de Astrobiología (CSIC-INTA)
Madrid, España
Tlf.: (+34) 918131196
Correo electrónico: mm@cab.inta-csic.es
Christopher Manser
University of Warwick
United Kingdom
Correo electrónico: C.Manser@warwick.ac.uk
Boris Gänsicke
University of Warwick
United Kingdom
Tlf.: +44 (0)2476574741
Correo electrónico: Boris.Gaensicke@warwick.ac.uk
Tom Frew
International Press Officer, University of Warwick
United Kingdom
Tlf.: +44 (0)24 7657 5910
Móvil: +44 (0)7785 433 155
Correo electrónico: a.t.frew@warwick.ac.uk
Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tlf.: +49 89 3200 6655
Móvil: +49 151 1537 3591
Correo electrónico: rhook@eso.org
Connect with ESO on social media
Esta es una traducción de la nota de prensa de ESO eso1544.
Are you a journalist? Subscribe to the ESO Media Newsletter in your language.
Más información:
- Ondas misteriosas haciendo carreras en un disco de formación de planetas
- Una estrella envejecida está envuelta en vapor de agua
- Un cuerpo formándose en un disco protoplanetario joven podría desafiar las teorías de formación de planetas
- Encuentran sistemas solares en plena formación en estrellas binarias
- Espirales en el polvo alrededor de estrellas jóvenes pueden ocultar la presencia de planetas masivos
- Una estrella cercana puede formar un nuevo sistema planetario gigantesco