Archivo de la etiqueta: exoplanetas

Hay una súper-Tierra congelada a solo seis años luz de nosotros

Hasta el 8 de noviembre, la Humanidad ha confirmado la existencia de 3.837 exoplanetas, una hazaña extraordinaria, considerando que antes de esta década la cantidad era inferior a 500. La mayoría, desafortunadamente, están a cientos o incluso miles de años luz de distancia, y es muy poco probable que podamos estudiar pronto estos mundos en forma directa. Pero unos pocos están un poco más cerca de casa, incluida una súper Tierra congelada a solo seis años luz de distancia, recientemente encontrada gracias a una nueva técnica para rastrear e identificar exoplanetas cercanos a nuestro vecindad.
En un artículo publicado en Nature el miércoles, un equipo internacional de astrónomos reportó haber encontrado un nuevo exoplaneta orbitando la estrella de Barnard, el segundo sistema estelar más cercano a la Tierra (luego del triple sistema estelar de Alpha Centauri), y durante mucho tiempo se creyó que estaba desprovista de planetas propios. Llamado Estrella de Barnard b (o GJ 699 b), el planeta tiene 3,2 veces la masa de la Tierra, y recorre una órbita de 233 días alrededor de su estrella.

También es un infierno helado, ubicado lejos de su estrella anfitriona, imposibilitado de cualquier posibilidad decente de recolectar radiación significativa. Los autores del artículo sospechan que las temperaturas promedian los -238 grados Fahrenheit (apenas 35 grados por encima del cero termodinámico absoluto). Es más de 100 grados más frío que la lectura más fría que se haya realizado en la Tierra.

«Creo que llamar potencialmente habitable a este planeta es tirar mucho de la cuerda», dice Johanna Teske, investigadora de la Institución Carnegie para la Ciencia en Washington, DC, y coautora del nuevo artículo. «Hace demasiado frío para tener agua líquida en la superficie, que es básicamente lo que define una zona habitable«, es decir, la región orbital alrededor de una estrella donde las temperaturas serían lo suficientemente moderadas para que exista agua líquida. En general, se considera al agua líquida un componente crucial en la evolución de la vida; al menos la vida tal como la conocemos.

Eso es un poco decepcionante, pero no desmerece la importancia del descubrimiento del planeta estrella de Barnard b, que ha llevado un trabajo de años.

«Hubo un indicio de una señal en los datos antes de 2015, momento en el cual se iniciaron campañas de observación más intensivas para confirmar la señal», dice Teske. Ese impulso importante al final resolvió que estas señales provenían de la detección de Proxima b, el exoplaneta más cercano a la Tierra, y uno que podría ser realmente habitable para la vida, si bien esas posibilidades se han reducido en los últimos años. “En base en los resultados de la misión Kepler, sabemos que es probable que muchas estrellas alberguen pequeños planetas. Entonces, ¿por qué no mirar hacia las estrellas más cercanas?

Paul Butler, otro investigador del Instituto Carnegie que trabajó en la investigación, llama al planeta estrella de Barnard b la «gran ballena blanca» de la cacería de planetas. Durante la mayor parte de los últimos 100 años la única técnica con la que los astrónomos pudieron buscar planetas extrasolares fue la técnica astrométrica«, con la cual investigadores buscan que la estrella anfitriona tiemble en el plano celeste en relación con las estrellas de fondo. El nuevo estudio va más allá de los límites de las técnicas de astrometría y ofrece una visión de cómo los cazadores de exoplanetas pueden avanzar y encontrar más mundos similares a los de la Tierra.

La investigación del planeta estrella de Barnard b se complicada por algunos desafíos, a saber, el largo período orbital del planeta (lo que dificultó un estudio basado en la transición estelar) y la pequeña amplitud de la señal producida por el objeto. El equipo necesitaba reunir una gran cantidad de datos para aislar la señal y estudiarla, y terminó incluyendo más de 20 años de datos recopilados por siete instrumentos diferentes. En total, es uno de los conjuntos de datos más grandes que jamás se haya utilizado para encontrar un exoplaneta, y parte de la razón por la que el equipo tiene más de 99% de confianza de que estrella de Barnard b es un planeta. «La parte realmente impresionante de este estudio es la cantidad y la alta calidad de los datos», dice Teske.




Encontraron el planeta estrella de Barnard b utilizando lo que se llama técnica de velocidad radial, que detecta y analiza las oscilaciones creadas por las fuerzas gravitacionales que actúan entre la estrella y el planeta durante su danza orbital. Aunque esta técnica se ha utilizado muchas veces antes para encontrar otros cientos de exoplanetas, nunca antes se había utilizado para encontrar uno tan pequeño y distante de su estrella.

¿Qué pasa con el planeta en sí? Desafortunadamente, todavía no sabemos mucho sobre estrella de Barnard b, aparte del hecho de que existe. «No sabemos si estrella de Barnard b tiene una atmósfera o incluso su composición promedio», dice Teske. Y la distancia hasta su estrella anfitriona hace que sea poco probable que pueda soportar vida, al menos la vida tal como la conocemos.

Sin embargo, ese misterio va en ambos sentidos, y podría ser una razón para mantener un poco de esperanza extraterrestre. «Podría ser posible que la superficie sea un poco más cálida y pueda albergar algunas moléculas en forma líquida, tal como el metano», dice Teske. «Y sabemos de lunas en nuestro sistema solar que están cubiertas por una capa gruesa de hielo pero tienen océanos líquidos debajo», como Europa y Encélado. La propia estrella de Barnard es una vieja enana roja y no muy activa, lo que significa que no hay que preocuparse de que inunde a sus planetas cercanos con demasiada radiación estelar. Y aunque es una super-Tierra, todavía está en el rango de masas planetarias que creemos que podrían sustentar la vida. Todo es especulativo, pero las perspectivas de habitabilidad en estrella de Barnard b no están totalmente descartadas.

Teske, Butler y otros continuarán estudiando a estrella de Barnard b, y están particularmente interesados en usar el nuevo exoplaneta como objetivo para probar los instrumentos de la próxima generación, como el próximo Telescopio Espacial James Webb de la NASA, que podría evaluar si existe una atmósfera presente o no. «Ese tipo de observaciones llevan años», dice Teske. «Pero personalmente, sigo siendo un astrónomo de carrera reciente. Puedo tener paciencia».

Fuente: Popular Science y Nature. Aportado por Eduardo J. Carletti

Más información:

Habitabilidad no implica vida

El descubrimiento de siete planetas del tamaño de la Tierra orbitando alrededor de la estrella TRAPPIST-1 –tres de ellos situados en la zona de habitabilidad– nos confirma, una vez más, que la astrobiología tiene conexiones con la habitabilidad planetaria. El hallazgo ha abierto todas las puertas a la imaginación y a la especulación sobre la existencia de vida. Como expertos en astrobiología tenemos que ser cautos y no conjeturar hasta que no tengamos evidencias palpables de que alguno de los planetas tiene vida


Planetas y zonas térmicas en el sistema Trappist-1 (Dibujo)

Uno de los aspectos fundamentales que debemos tener en cuenta ante este tipo de hallazgos, aunque parezca paradójico, es determinar exactamente qué es un planeta. Esto no parece tan claro. Hace unos años, la Unión Astronómica Internacional decidió, en una declaración muy controvertida, cambiar el concepto de planeta. La decisión ha sido muy contestada en el ámbito de las ciencias planetarias ya que restringe la definición a la dinámica del cuerpo más que a sus características específicas.





Desde la geología planetaria pensamos que un objeto, un planeta o cualquier otro, debe estar definido por sus propias características más que por las relaciones dinámicas que los conectan con otros objetos, sobre todo teniendo en cuenta que existen objetos aparentemente pequeños como Plutón con una geología, dinámica y características mucho más propias de un planeta que otros que sí están definidos como tales.


Comparación de tamaños (Dibujo)

Lo que nos está diciendo este descubrimiento constante –recordemos que ya llevamos miles de planetas hallados fuera de nuestro sistema solar– es que la diversidad planetaria es enorme y no podemos clasificar o realizar tipologías en base a lo que nosotros encontramos en nuestro sistema.

Tal vez no necesitemos una definición de planeta porque la variedad de objetos con estas características es tal que se saldría de lo que sería nuestro concepto

Tenemos que tener una mente mucho más abierta y ser capaces de decir que, tal vez, simplemente no necesitemos una definición de planeta porque la variedad de objetos con estas características es tal que se saldría de lo que sería nuestro concepto. Alan Stern y otros colegas han propuesto que dentro de nuestro sistema solar este concepto se base en aspectos geofísicos más que en aspectos dinámicos u orbitales. Evitemos especular sobre la presencia de vida Respecto a los siete exoplanetas, se han abierto todas las puertas a la imaginación y a la especulación sobre la posible existencia de vida. Nosotros tenemos que ser especialmente cautos, sobre todo los que trabajamos en astrobiología ya que no debemos especular hasta que no tengamos evidencias palpables de que el planeta tiene vida.

Obviamente somos los primeros que deseamos encontrar vida fuera de la Tierra. El universo, como decía Carl Sagan, es inmenso y sería absurdo pensar que estamos solos pero es cierto que no tenemos ninguna evidencia de la existencia de vida en ningún otro lugar de nuestro sistema solar ni más allá. Al menos hasta el momento.

"No tenemos ninguna evidencia de la existencia de vida en ningún otro lugar de nuestro sistema solar ni más allá"

Por el momento, los únicos que somos capaces de trasladarnos de un planeta a otro –aunque todavía no hemos ido a Marte pero sí a la Luna– somos nosotros, los que vivimos en la Tierra. En este sentido es muy importante en el estudio de los planetas extrasolares diferenciar lo que es vida de lo que es habitabilidad, algo que estamos viendo con la exploración de Marte en la que, desde España estamos teniendo una implicación y una responsabilidad importantes. No se deben confundir ambos conceptos porque son distintos.

Esta ilustración nos permite imaginar lo que sería (supuestamente) estar en la superficie del exoplaneta TRAPPIST-1f, uno de los siete hallados en el sistema TRAPPIST-1. / NASA/JPL-Caltech.

La habitabilidad es lo que hace que un planeta tenga las características para ser habitable, en su concepto más amplio, desde los microorganismos extremófilos más singulares e inusuales hasta seres parecidos a nosotros o, tal vez, incluso más complejos. No lo sabemos todavía.

Que un planeta tenga características de habitabilidad no significa que por eso vaya a tener vida. Aquí en la Tierra sabemos que la habitabilidad y la vida están relacionadas con la presencia de agua líquida y la química del carbono. Probablemente en otros sitios sea igual. Hasta el momento, las únicas directrices para la búsqueda de vida son estas: el carbono y el agua.

Diferencia entre biomarcadores y geomarcadores

Relacionado con la habitabilidad y con la vida debemos tener presente la conexión entre biomarcardores y geomarcadores. El concepto de biomarcador hay que tenerlo muy en cuenta en la búsqueda de vida en cualquier planeta extrasolar porque, al igual que hablábamos antes de manera genérica con respecto a la vida, tenemos que ser especialmente restrictivos al usar el término biomarcador para únicamente aquello que esté clara e inequívocamente relacionado con la vida.

"Para que un planeta pueda tener vida o la vida pueda haberse desarrollado es importante que esté vivo desde el punto de vista geológico"

Como indica Simoneit –quien propuso el concepto– solamente deben llamarse así aquellos compuestos orgánicos que procedan inequívocamente de la actividad biológica de un organismo. Todo lo demás serían geomarcadores, un concepto que yo mismo propuse hace unos años para hablar de marcadores ambientales y de habitabilidad.

De esta manera, una relación isotópica probablemente relacionada con la actividad biológica sería un geomarcador geoquímico. El agua sería también un geomarcador, ambiental, pero de ninguna manera serían biomarcadores porque no serían compuestos orgánicos. Un cristal de magnetita sería también un geomarcador pero no un biomarcador.

Los descubrimientos que están ocurriendo abren las puertas a nuevos estudios en los que, desde la geología planetaria, tenemos mucho que decir. Se está viendo que para que un planeta pueda tener vida o la vida pueda haberse desarrollado es importante que esté vivo desde el punto de vista geológico ya que la geología, la actividad, la vitalidad geológica de un cuerpo planetario hacen que se estén continuamente creando, destruyendo y modificando sitios donde la vida puede emerger y desarrollarse.





Desde la geología pensamos que este nuevo y sorprendente hallazgo profundiza mucho más en lo que nosotros debemos estudiar, en ampliar el contexto de las geociencias hacia temas aparentemente más lejanos, aunque continuamente estamos viendo que los descubrimientos se están produciendo en nuestro día a día. También nos ayuda a fortalecer las investigaciones que estamos llevando al demostrar que lo que estamos planteando sobre la relevancia de este tipo de estudios es algo real y los geólogos tenemos mucho que decir.

Jesús Martínez Frías es investigador científico del Instituto de Geociencias (Universidad Complutense de Madrid-CSIC) y Director de la Red Española de Planetología y Astrobiología (REDESPA).

Fuente: Agencia Sinc. Aportado por Eduardo J. Carletti

Más información:

Un planeta en la zona habitable que rodea a la estrella Próxima Centauri

La campaña Pale Red Dot revela la existencia de un mundo con una masa similar a la de la Tierra en órbita alrededor de Próxima Centauri.

Utilizando telescopios de ESO y otras instalaciones, un equipo de astrónomos ha encontrado claras evidencias de la presencia de un planeta orbitando la estrella más cercana a la Tierra, Próxima Centauri. Este mundo, tan intensamente buscado y bautizado como Próxima b, orbita a su fría y roja estrella anfitriona cada 11 días y tiene una temperatura que permitiría la existencia de agua líquida en su superficie. Este mundo rocoso es un poco más masivo que la Tierra y es el exoplaneta más cercano a nosotros —y también puede ser el planeta más cercano que pueda albergar vida fuera del Sistema Solar. Un artículo que describe el hallazgo de este hito se publicará en la revista Nature el 25 de agosto de 2016.

A poco más de cuatro años luz del Sistema Solar, se encuentra una estrella enana roja que ha sido nombrada Próxima Centauri, dado que es la estrella más cercana a la Tierra aparte del Sol. Esta estrella fría de la constelación de Centaurus es demasiado débil para poder ser detectada a simple vista y se encuentra cerca de un par de estrellas, mucho más brillantes, conocidas como Alfa Centauri AB.

Durante el primer semestre de 2016, Próxima Centauri fue observada con regularidad con el espectrógrafo HARPS, instalado en el Telescopio de 3,6 metros ESO en La Silla (Chile) y monitorizada simultáneamente con otros telescopios de todo el mundo [1]. Esto formó parte de la campaña Pale Red Dot (Punto rojo pálido), en la que un equipo de astrónomos, dirigido por Guillem Anglada-Escudé (de la Universidad Queen Mary de Londres), buscaba el pequeño bamboleo que, por la fuerza de la gravedad, provocaría en la estrella la existencia de un planeta en órbita [2].

Dado que se trata de un asunto de gran interés público, los avances de la campaña Pale Red Dot obtenidos entre mediados de enero y abril de 2016 se compartieron públicamente en el sitio web y a través de las redes sociales. Los informes iban acompañados por numerosos artículos de divulgación escritos por especialistas de todo el mundo.

Guillem Anglada-Escudé explica el trasfondo de esta búsqueda única: «Las primeras señales de un posible planeta se vieron en 2013, pero la detección no era convincente. Desde entonces, hemos trabajado duro para obtener más observaciones con la ayuda de ESO y de otras instituciones. La reciente campaña Pale Red Dot ha sido llevado casi dos años de planificación».

Al combinar los datos de Pale Red Dot con observaciones anteriores llevadas a cabo en observatorios de ESO y en otros lugares, se ha obtenido claramente un resultado verdaderamente emocionante. A veces, Próxima Centauri se aproxima a la Tierra a unos 5 kilómetros por hora –el ritmo de una marcha humana normal- y, a veces, retrocede a la misma velocidad. Este patrón regular de cambio de velocidades radiales se repite con un período de 11,2 días. Un análisis cuidadoso de los minúsculos cambios en el efecto Doppler indicó la presencia de un planeta con una masa al menos 1,3 veces mayor que la de la Tierra, orbitando a unos 7 millones de kilómetros de Próxima Centauri -sólo el 5% de la distancia Sol-Tierra [3].

Guillem Anglada-Escudé nos habla sobre la emoción de los últimos meses: «Seguí revisando la consistencia de la señal todos los días durante las 60 noches de la campaña Pale Red Dot. Los 10 primeros fueron prometedores, los primeros 20 fueron consistentes con las expectativas, y a los 30 días el resultado era bastante definitivo, ¡así que empezamos a redactar el artículo!».

Las enanas rojas como Próxima Centauri son estrellas activas que pueden tener variaciones, generando efectos parecidos a los que genera la presencia de un planeta. Para excluir esta posibilidad, durante la campaña el equipo también monitorizó de forma cuidadosa la luminosidad cambiante de la estrella usando el telescopio ASH2, instalado en el Observatorio de Exploraciones Celestes de San Pedro de Atacama (Chile) y la red de telescopios del Observatorio Las Cumbres. Se excluyeron del análisis final los datos de velocidad radial tomados cuando la estrella se dilataba.

Aunque Próxima b orbita mucho más cerca de su estrella que Mercurio del Sol en nuestro Sistema Solar, su estrella es mucho más débil que el Sol. Como resultado, Próxima b se encuentra dentro de la zona habitable alrededor de la estrella y tiene una temperatura superficial estimada que permitiría la presencia de agua líquida.

A pesar de la órbita templada de Próxima b, las condiciones en la superficie pueden verse fuertemente afectadas por las llamaradas de rayos X y de radiación ultravioleta procedentes de la estrella, mucho más intensas que las que experimenta la Tierra con respecto al Sol [4].

Este descubrimiento será el inicio de observaciones más amplias, tanto con instrumentos actuales [5] como con la próxima generación de telescopios gigantes como el E-ELT (European Extremely Large Telescope). Próxima b será un blanco perfecto para la búsqueda de evidencia de vida en otros lugares del universo. De hecho, el sistema Alfa Centauri es también el objetivo del primer intento de la humanidad de viajar a otro sistema solar, el proyecto StarShot.

Guillem Anglada-Escudé concluye: «Se han encontrado muchos exoplanetas y van a descubrirse aún muchos más, pero buscar el potencial análogo de la Tierra más cercano y conseguirlo ha sido la experiencia de toda una vida para todos nosotros. Historias y esfuerzos de muchas personas convergen en este descubrimiento. El resultado es también un homenaje a todos ellos. El siguiente paso es la búsqueda de vida en Próxima b…».

Notas

[1] Además de los datos de la reciente campaña Pale Red Dot, el artículo incorpora las aportaciones de los científicos que han estado observando Próxima Centauri durante muchos años. Esto incluye a miembros del programa original UVES/ESO M-dwarf (Martin Kürster y Michael Endl) y a pioneros en la búsqueda de exoplanetas como R. Paul Butler. También se incluyeron observaciones públicas del equipo de HARPS de Ginebra obtenidas a lo largo de muchos años.

[2] El nombre Pale Red Dot (punto rojo pálido) hace referencia a la famosa frase de Carl Sagan que describe a la Tierra como un punto azul pálido. Dado que Próxima Centauri es una estrella enana roja, bañaría a su planeta en órbita con un pálido resplandor rojo.

[3] Durante los últimos diez años ya es técnicamente posible obtener detecciones como la que hoy damos a conocer. De hecho, previamente se han detectado señales con amplitudes más pequeñas. Sin embargo, las estrellas no son suaves bolas de gas y Próxima Centauri es una estrella activa. La confirmada detección de Próxima b sólo ha sido posible tras alcanzar un detallado entendimiento de cómo la estrella cambia en escalas de tiempo de minutos a una década, y tras monitorizar su brillo con telescopios fotométricos.

[4] Que un tipo de planeta como este tenga capacidad o no para albergar agua y vida parecida a la de la Tierra es un intenso tema de debate, en gran parte, teórico. Los aspectos principales que actuarían en contra de la presencia de vida se relacionan con la cercanía de la estrella. Por ejemplo, es muy probable que las fuerzas gravitatorias hagan que el mismo lado del planeta permanezca expuesto a la luz del día, mientras que el otro lado está en perpetua noche. La atmósfera del planeta también podría estar evaporándose lentamente, o tener una química más compleja que la de la Tierra debido a la fuerte radiación ultravioleta y a los rayos X, especialmente durante los primeros miles de millones de años de vida de la estrella. Sin embargo, ninguno de los argumentos se ha demostrado de manera concluyente y no pueden darse por hechos sin evidencias observacionales directas que permitan, entre otras cosas, la caracterización de la atmósfera del planeta. Factores similares se aplican a los planetas recientemente encontrados alrededor de TRAPPIST-1.

[5] Algunos métodos para estudiar la atmósfera de un planeta dependen de su paso delante de su estrella y, por tanto, de la luz de la estrella que, a su vez, pasa a través de la atmósfera del exoplaneta en su camino hacia la Tierra. Actualmente no hay ninguna evidencia de que Próxima b transite a través del disco de su estrella y parece que hay pocas posibilidades de que esto ocurra, pero se están llevando a cabo otras observaciones para comprobar esta opción.

Información adicional

Este trabajo de investigación se ha presentado en el artículo científico titulado “A terrestrial planet candidate in a temperate orbit around Proxima Centauri”, por G. Anglada-Escudé et al., y aparece en la revista Nature el 25 de agosto de 2016.

El equipo está formado por Guillem Anglada-Escudé (Universidad Queen Mary de Londres, Londres, Reino Unido); Pedro J. Amado (Instituto de Astrofísica de Andalucía-CSIC, Granada, España); John Barnes (Universidad Abierta, Milton Keynes, Reino Unido); Zaira M. Berdiñas (Instituto de Astrofísica de Andalucia-CSIC, Granada, España); R. Paul Butler (Institución Carnegie de Washington, Departamento de Magnetismo Terrestre, Washington, EE.UU.); Gavin A. L. Coleman (Universidad Queen Mary de Londres, Londres, Reino Unido); Ignacio de la Cueva (Astroimagen, Ibiza, España); Stefan Dreizler (Instituto de Astrofísica, Universidad Georgia Augusta de Gotinga, Gotinga, Alemania); Michael Endl (Universidad de Texas en Austin y Observatorio McDonald, Austin, Texas, EE.UU.); Benjamin Giesers (Instituto de Astrofísica, Universidad Georgia Augusta de Gotinga, Gotinga, Alemania); Sandra V. Jeffers (Instituto de Astrofísica, Universidad Georgia Augusta de Gotinga, Gotinga, Alemania); James S. Jenkins (Universidad de Chile, Santiago, Chile); Hugh R. A. Jones (Universidad de Hertfordshire, Hatfield, Reino Unido); Marcin Kiraga (Observatorio de la Universidad de Varsovia, Varsovia, Polonia); Martin Kürster (Instituto Max-Planck de Astronomía, Heidelberg, Alemania); María J. López-González (Instituto de Astrofísica de Andalucía-CSIC, Granada, España); Christopher J. Marvin (Instituto de Astrofísica, Universidad Georgia Augusta de Gotinga, Gotinga, Alemania); Nicolás Morales (Instituto de Astrofísica de Andalucía-CSIC, Granada, España); Julien Morin (Laboratorio Universo y Partículas de Montpellier, Universidad de Montpellier & CNRS, Montpellier, Francia); Richard P. Nelson (Universidad Queen Mary de Londres, Londres, Reino Unido); José L. Ortiz (Instituto de Astrofísica de Andalucía-CSIC, Granada, España); Aviv Ofir (Instituto Weizmann de Ciencia, Rehovot, Israel); Sijme-Jan Paardekooper (Universidad Queen Mary de Londres, Londres, Reino Unido); Ansgar Reiners (Instituto de Astrofísica, Universidad Georgia Augusta de Gotinga, Gotinga, Alemania); Eloy Rodriguez (Instituto de Astrofísica de Andalucía-CSIC, Granada, España); Cristina Rodriguez-Lopez (Instituto de Astrofísica de Andalucía-CSIC, Granada, España); Luis F. Sarmiento (Instituto de Astrofísica, Universidad Georgia Augusta de Gotinga, Gotinga, Alemania); John P. Strachan (Universidad Queen Mary de Londres, Londres, Reino Unido); Yiannis Tsapras (Instituto de Cálculo Astronómico, Heidelberg, Alemania); Mikko Tuomi (Universidad de Hertfordshire, Hatfield, Reino Unido) y Mathias Zechmeister (Instituto de Astrofísica, Universidad Georgia Augusta de Gotinga, Gotinga, Alemania).

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de dieciséis países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Además, cerca de Paranal, en Cerro Armazones, ESO está construyendo el E-ELT (European Extremely Large Telescope), el telescopio óptico y de infrarrojo cercano de 39 metros que llegará a ser “el ojo más grande del mundo para mirar el cielo”.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces