Archivo de la etiqueta: Estrellas

Estrella de bosones ultralivianos: ¿El universo oscuro es el origen de las ondas gravitacionales?

Los científicos que trabajan en la frontera de la física de partículas proponen la existencia teórica de un exótico bosón ultraliviano con una masa miles de millones de veces menor que la del electrón. Están buscando un origen ‘más oscuro’ de las ondas en el espacio-tiempo, al mismo tiempo que prueban la existencia de una partícula de materia oscura. Las teorías sobre el origen de la materia oscura en el universo —uno de los mayores interrogantes de la ciencia— van desde sugerir que puede ser más antigua que el Big Bang hasta la existencia de partículas del tamaño de galaxias.


Más allá del modelo estándar

La cuestión de qué partículas componen la materia oscura —“oscura” en el sentido de que no emite radiación o apenas interactúa físicamente con nada, excepto a través de su atracción gravitacional— es crucial para la física de partículas moderna. Las observaciones indican que la materia oscura existe, pero aparentemente la constituye algo diferente a las partículas del modelo estándar.

En septiembre de 2020, el LVC, organismo conjunto de LIGO Scientific Collaboration y Virgo Collaboration, anunció la detección de la señal de onda gravitacional GW190521 proveniente de la fusión de dos agujeros negros de masa estelar con una masa de 85 y 66 masas solares. El resultado final de la fusión fue un agujero negro de masa intermedia con 142 masas solares. Las 9 masas solares restantes se irradiaron como energía en forma de ondas gravitacionales.

El descubrimiento fue de suma importancia porque estos agujeros negros de masa intermedia se habían considerado durante mucho tiempo el eslabón perdido entre los agujeros negros de masa estelar que se forman a partir del colapso de las estrellas y los agujeros negros supermasivos ocultos en el centro de casi todas las galaxias.

A pesar de su importancia, la observación de GW190521 plantea un enorme desafío para la comprensión actual de la evolución estelar, porque uno de los agujeros negros fusionados tiene un tamaño «prohibido». Específicamente, los modelos estándar de evolución estelar no pueden formar agujeros negros con 85 veces la masa del sol.

La alternativa de la estrella de bosones

La explicación alternativa, dice Nicolás Sanchis-Gual, investigador postdoctoral en la Universidad de Aveiro y en el Instituto Superior Técnico (Universidad de Lisboa), abre una nueva dirección para el estudio: una superficie ‘sin retorno’, u horizonte de eventos. Cuando chocan, forman una estrella de bosones que puede volverse inestable, colapsando eventualmente en un agujero negro y produciendo una señal consistente con lo que LVC observó el año pasado. A diferencia de las estrellas regulares, que están hechas de lo que comúnmente conocemos como materia, las https://en.wikipedia.org/wiki/Exotic_star#Boson_stars estrellas bosónicas están formadas por bosones ultralivianos. Estos bosones son uno de los candidatos más atractivos para constituir la materia oscura, que forma alrededor del 27% del Universo”.

¿Materia oscura ultraligera?

Un nuevo hallazgo implica la primera observación de estrellas bosónicas, así como de su bloque de construcción, una nueva partícula conocida como bosón ultraliviano (o ultraligero) que se ha propuesto como los constituyentes de lo que conocemos como materia oscura. Si se confirma con el análisis posterior de GW190521 y otras observaciones de ondas gravitacionales, el resultado proporcionaría la primera evidencia observacional para un candidato a ser la materia oscura largamente buscada. Los candidatos de materia oscura ultraligera tienen solo una pequeña fracción de la masa de un electrón, en contraste con la materia oscura fría más popular, que incluye varios candidatos con decenas a cientos de veces la masa de un protón.

Esto elimina que deba existir un «agujero negro prohibido»

El equipo comparó la señal GW190521 con las de simulaciones por computadora de fusiones de estrellas de bosones, y descubrió que en realidad explican los datos un poco mejor que el análisis realizado por LVC, explica el codirector del equipo Juan Calderón Bustillo, miembro de Marie Curie en el Instituto Gallego de Física de Alta Energía. «Primero, ya no estaríamos hablando de colisión de agujeros negros, lo que elimina el problema de tratar con un agujero negro prohibido. En segundo lugar, debido a que las fusiones de estrellas de bosones son mucho más débiles, inferimos una distancia mucho más cercana que la estimada por LVC. Esto conduce a una masa mucho mayor para el agujero negro final, de unas 250 masas solares, por lo que el hecho de que hayamos sido testigos de la formación de un agujero negro de masa intermedia sigue siendo cierto».

Aunque el análisis tiende a favorecer adrede la hipótesis de la fusión de los agujeros negros, dice el astrofísico Toni Font , de la Universidad de Valencia y uno de los coautores, «la fusión de estrellas de bosones es, en realidad, es un poco más ajustada a los datos, aunque en un sentido manera no es concluyente. A pesar de que el marco computacional de las simulaciones de estrellas de bosones actuales sigue siendo bastante limitado y está sujeto a importantes mejoras, el equipo seguirá desarrollando un modelo más evolucionado y estudiará observaciones de ondas gravitacionales similares bajo el supuesto de una fusión de estrellas de bosones».

El hallazgo no solo implica la primera observación de estrellas bosónicas, sino también de su bloque de construcción, una nueva partícula conocida como bosón ultraliviano, dice el coautor Carlos Herdeiro de la Universidad de Aveiro. «Estos bosones ultralivianos se han propuesto como constituyentes de lo que conocemos como materia oscura. Además, el equipo puede medir la masa de esta supuesta nueva partícula de materia oscura y se descarta un valor de cero con un alto nivel de confianza».

La última palabra, J. Antonio Font

«Los estudios de inferencia sobre GW190521 llevados a cabo por la Colaboración LIGO VIRGO KAGRA (LVK) reportaron una masa de agujero negro primario de alrededor de 85 millones de soles (Msol, Msun en inglés)», escribió Antonio Font en una respuesta por correo electrónico a The Daily Galaxy que le preguntaba cómo la observación de GW190521 plantea un desafío a la comprensión actual de la evolución estelar, y si ha confirmado el análisis posterior la existencia del bosón ultraliviano.

«Esta masa está dentro del rango de masas de una supernova de inestabilidad de [producción de] pares [electrón-positrón]», explicó Font, «un tramo de masas aproximadamente entre 50 Msol y 130 Msol, donde no se espera que se formen agujeros negros a partir del colapso gravitatorio de una estrella masiva al final de su evolución. Si bien la existencia de este tramo parece ser un resultado teórico sólido, se sabe que sus límites particulares se ven afectados por factores que no se comprenden muy bien, por ejemplo, la rotación de la estrella, incertidumbres sobre las tasas de reacciones nucleares o episodios de rápida acumulación en el nacimiento del agujero negro».

«Parece, aunque improbable», prosiguió Font, «que el límite inferior del tramo pueda ascender a un valor cercano a los 85 Msol. Como resultado, ha habido una serie de explicaciones alternativas para GW190521, incluidas capturas jerárquicas, fusiones altamente no cuasi circulares, sistemas de agujeros negros toroidales de alta masa, o incluso propuestas exóticas como fusiones de agujeros negros primordiales o colisiones de hipotéticas estrellas bosónicas, siendo esta última nuestra propia propuesta».

«Actualmente estamos reevaluando nuestro análisis con algunas de las observaciones más masivas reportadas en GWTC-3 (third Gravitational-Wave Transient Catalog, o Tercer Catálogo de Transitorios de Ondas Gravitacionales de LIGO), encontrando una buena concordancia con el valor de la masa del bosón ultraliviano que inferimos de la señal GW190521. Si bien esto respalda aún más nuestra afirmación de un conflicto entre dos modelos teóricos (colisiones de agujeros negros frente a colisiones de estrellas de bosones), de ninguna manera implica (y mucho menos confirma) la existencia de bosones ultralivianos. Un fuerte apoyo para su existencia podría provenir de la detección de ondas gravitacionales continuas de nubes de bosones alrededor de agujeros negros giratorios».

Si se confirma con el análisis posterior de GW190521 y otras observaciones de ondas gravitacionales, el resultado proporcionaría la primera evidencia observacional de un origen «más oscuro» de las ondas en el espacio-tiempo y probaría la existencia de una partícula de materia oscura. El evento G2190521 se detectó cerca del borde de nuestro universo observable a una distancia de 5,3 gigaparsecs (17 mil millones de años luz). Las fusiones más cercanas de agujeros negros que abarcan el límite de masa estelar / masa intermedia pueden ayudar a confirmar la naturaleza de estos esquivos objetos.
________________________________________
Fuente: Physical Review Letters / Daily Galaxy

Noticias relacionadas:

Estrella explotó, sobrevivió y estalló de nuevo más de 50 años después

Es el equivalente celeste de un villano de la película de terror, una estrella que no permanece muerta

Un equipo internacional de astrónomos como Nick Konidaris de Carnegie y Benjamin Shappee descubrieron una estrella que explotó varias veces en un período de 50 años. El hallazgo, publicado por Nature, confunde completamente el conocimiento existente de los científicos sobre el final de la vida de una estrella, y la construcción de instrumentos de Konidaris jugó un papel crucial en el análisis del fenómeno.





En septiembre de 2014, el equipo de astrónomos intermedios Palomar Transient Factory detectó una nueva explosión en el cielo, iPTF14hls. La luz emitida por el evento se analizó para comprender la velocidad y la composición química del material expulsado en la explosión.

Este análisis indicó que la explosión era lo que se llama una supernova tipo II-P, y todo sobre el descubrimiento parecía normal. Hasta, es decir, unos meses más tarde cuando la supernova comenzó a ser más brillante de nuevo. Las supernovas tipo II-P usualmente permanecen brillantes por alrededor de 100 días. ¡Pero iPTF14hls se mantuvo brillante por más de 600! Además, los datos de archivo revelaron una explosión de 1954 en la misma ubicación exacta.

La estrella explotó, sobrevivió y explotó de nuevo más de 50 años después

Una imagen tomada por el Observatory Sky Survey del Observatorio Palomar revela una posible explosión en el año 1954 en la ubicación de iPTF14hls (arriba), no se ve en una imagen posterior tomada en 1993 (abajo):


Resultó que esta estrella explotó hace más de medio siglo, y de alguna manera sobrevivió y explotó una vez más en 2014.

«Esta supernova rompe todo lo que pensamos que sabíamos sobre cómo funcionan», dijo Iair Arcavi, el autor principal, de la Universidad de California en Santa Bárbara y Observatorio de Las Cumbres.

Un instrumento construido por Konidaris fue clave para analizar la luz emitida por iPTF14hls, que se atenuó y se iluminó al menos cinco veces en tres años. Llamada SED Machine, la herramienta de Konidaris es capaz de clasificar rápidamente supernovas y otros eventos astronómicos de vida corta. Era muy necesario un cambio rápido en la clasificación de este tipo de objetos en el cielo, llamados transitorios, cuando Konidaris y antiguos colegas de Caltech construyeron por primera vez la máquina.


iPTF14hls creció brillante y se atenuó de nuevo al menos cinco veces en dos años. Este comportamiento nunca se ha visto en supernovas previas, que normalmente permanecen brillantes durante aproximadamente 100 días y luego se desvanecen. Crédito: Adaptado de Arcavi et al. 2017, Nature. LCO / S. Wilkinson

Las explosiones estelares enseñan mucho a los astrónomos sobre los orígenes de gran parte del material que compone nuestro universo. Una explosión de supernova incluso puede haber desencadenado la formación de nuestro propio Sistema Solar.

«Pero no hace mucho tiempo era más rápido identificar fenómenos celestes efímeros que clasificarlos y determinar qué podían enseñarnos», dijo Konidaris. «Por eso construimos SED, pero nunca pensé que nos ayudaría a analizar una explosión tan extraña como esta estrella zombie».

«El papel de Nick en este descubrimiento demuestra la importancia de llevar adelante y mantener activos los esfuerzos de instrumentación, algo que es cada vez más raro en muchos campos», agregó el Director de Observatorios, John Mulchaey.

Más información: «Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star», Nature (2017). nature.com/articles/doi:10.1038/nature24030

Fuente: Physorg. Aportado por Eduardo J. Carletti

Más información:

Las Nubes de Magallanes están conectadas por un puente de estrellas

Las nubes de Magallanes, las dos galaxias satélites más grandes de la Vía Láctea, se ven conectadas por un puente que se extiende a lo largo de 43.000 años luz

Un equipo internacional de astrónomos liderado por investigadores de la Universidad de Cambridge publica este hallazgo en la revista Monthly Notices of the Royal Astronomical Society y se basa en el censo estelar galáctico realizado por el Observatorio Espacial Europeo, Gaia.

Durante los últimos 15 años, los científicos han anticipado ansiosamente los datos de Gaia. La primera porción de información del satélite fue presentada hace tres meses y es de libre acceso. Este conjunto de datos de calidad sin precedentes es un catálogo de las posiciones y el brillo de mil millones de estrellas en nuestra galaxia de la Vía Láctea y sus alrededores.

Lo que Gaia ha enviado a la Tierra es único. La resolución angular del satélite es similar a la del Telescopio Espacial Hubble, pero dada su mayor campo de visión, puede cubrir todo el cielo en lugar de una pequeña porción de él. De hecho, Gaia utiliza el mayor número de píxeles para tomar imágenes digitales del cielo de cualquier instrumento espacial. Mejor aún, el Observatorio no tiene sólo un telescopio sino dos, compartiendo el plano focal de un metro de ancho.

A diferencia de los telescopios típicos, Gaia no solo apunta y mira: constantemente gira alrededor de su eje, barriendo todo el cielo en menos de un mes. Por lo tanto, no sólo mide las propiedades instantáneas de las estrellas, sino que también rastrea sus cambios con el tiempo. Esto proporciona una oportunidad perfecta para encontrar una variedad de objetos, por ejemplo estrellas que pulsan o explotan, incluso si esto no es para lo que el satélite fue diseñado principalmente.

El equipo de Cambridge se concentró en el área alrededor de las Nubes de Magallanes y usó los datos de Gaia para seleccionar estrellas pulsantes de un tipo particular: las llamadas RR Lyrae, muy antigua y no evolucionada químicamente. Como estas estrellas han estado alrededor desde los primeros días de la existencia de las Nubes, ofrecen una visión de la historia de la pareja. El estudio de las Nubes de Magallanes (LMC y SMC, respectivamente) siempre ha sido difícil ya que se extienden a lo largo de una gran área. Pero con la visión de todo el cielo de Gaia, esto se ha convertido en una tarea mucho más fácil.

Alrededor de la Vía Láctea, las nubes son los ejemplos más brillantes y más grandes de galaxias satelitales enanas. Conocidas por la humanidad desde los albores de la historia (y para los europeos desde sus primeros viajes al hemisferio sur) las Nubes de Magallanes han permanecido como un enigma hasta la fecha. A pesar de que las nubes han sido un elemento constante del cielo, los astrónomos sólo recientemente han tenido la oportunidad de estudiarlas en cualquier detalle.

La cuestión de si las nubes encajan o no en la teoría convencional de la formación de galaxias depende críticamente de su masa y del momento de su primer acercamiento a la Vía Láctea. Los investigadores del Instituto de Astronomía de Cambridge encontraron pistas que podrían ayudar a responder a ambas preguntas.

En primer lugar, las estrellas RR Lyrae detectadas por Gaia se utilizaron para trazar la extensión de la Gran Nube de Magallanes (LMC). Se encontró que la LMC poseía un «halo» de baja luminosidad difusa que se extendía hasta 20 grados desde su centro. La LMC sólo sería capaz de aferrarse a las estrellas a distancias tan grandes si era sustancialmente más grande de lo que se pensaba anteriormente, totalizando tal vez hasta una décima parte de la masa de toda la Vía Láctea.

Una sincronización exacta de la llegada de las nubes a la galaxia es imposible sin el conocimiento de sus órbitas. Desafortunadamente, las órbitas de los satélites son difíciles de medir: a grandes distancias, el movimiento del objeto en el cielo es tan minúsculo que es simplemente no observable durante una vida humana. En ausencia de una órbita, Vasily Belokurov y sus colegas encontraron lo siguiente mejor: una corriente estelar.

Corrientes de estrellas se forman cuando un satélite —una galaxia enana o un cúmulo de estrellas— comienza a sentir la fuerza de marea del cuerpo alrededor del cual orbita. Las mareas estiran el satélite en dos direcciones: hacia y lejos del anfitrión. Como resultado, en la periferia del satélite, dos aberturas se forman: pequeñas regiones donde la atracción gravitacional del satélite es equilibrada por la atracción del huésped. Las estrellas satélites que entran en estas regiones encuentran fácil abandonar el satélite por completo y comenzar a orbitar al huésped. Poco a poco, estrella tras estrella abandona el satélite, dejando una huella luminosa en el cielo, y revelando así la órbita del satélite.

«Las corrientes estelares alrededor de las nubes fueron predichas pero nunca observadas,» explica el Belokurov. «Después de haber marcado las posiciones de RR Lyrae en el cielo con Gaia, nos sorprendió ver una estrecha estructura en forma de puente que conecta las dos nubes. Creemos que al menos en parte este ‘puente’ está compuesto de estrellas despojadas de la nube pequeña por la grande. El resto puede ser realmente las estrellas de la LMC sacadas de ella por la Vía Láctea».

Los investigadores creen que el puente RR Lyrae ayudará a aclarar la historia de la interacción entre las nubes y nuestra galaxia.

«Hemos comparado la forma y la posición exacta del puente estelar de Gaia con las simulaciones por ordenador de las nubes de Magallanes cuando se aproximan a la Vía Láctea», explica Denis Erkal, coautor del estudio.





«Muchas de las estrellas en el puente parecen haber sido removidas de la Pequeña Nube de Magallanes (SMC) en la interacción más reciente, hace unos 200 millones de años, cuando las galaxias enanas pasaron relativamente cerca una de otra». Creemos que como resultado de ese evento, no sólo las estrellas, sino también el gas hidrógeno, se eliminó de la SMC. Al medir el desplazamiento entre los puentes de RR Lyrae y el hidrógeno, podemos poner restricciones sobre la densidad de la corona galáctica gaseosa».

Vasily Belokurov et al, Clouds, Streams and Bridges. Redrawing the blueprint of the Magellanic System withDR1, Monthly Notices of the Royal Astronomical Society (2016). DOI: 10.1093/mnras/stw3357

Fuente: Physorg. Aportado por Eduardo J. Carletti

Más información: