Podría haber un antiuniverso gemelo retrocediendo en el tiempo

Un antiuniverso retrocediendo en el tiempo podría explicar la materia oscura y la inflación cósmica.

Una nueva y alocada teoría sugiere que puede haber otro «anti-universo», retrocediendo en el tiempo antes del Big Bang.

La idea asume que el universo primitivo era pequeño, caliente y denso, y tan uniforme que el tiempo parece simétrico hacia atrás y hacia adelante.

Si es cierto, la nueva teoría significa que la materia oscura no es tan misteriosa; es solo un nuevo sabor de una partícula fantasmal llamada neutrino que solo puede existir en este tipo de universo. Y la teoría implica que no habría necesidad de un período de «inflación» que expandió rápidamente el tamaño del cosmos joven poco después del Big Bang.


Si es cierto, entonces los experimentos futuros para buscar ondas gravitacionales, o para precisar la masa de los neutrinos, podrían responder de una vez por todas si existe este antiuniverso espejo.

Preservando la simetría

Los físicos han identificado un conjunto de simetrías fundamentales en la naturaleza. Las tres simetrías más importantes son: carga (si cambia las cargas de todas las partículas involucradas en una interacción a su carga opuesta, obtendrá la misma interacción); paridad (si miras la imagen especular de una interacción, obtienes el mismo resultado); y el tiempo (si ejecuta una interacción hacia atrás en el tiempo, se verá igual).

Las interacciones físicas obedecen a la mayoría de estas simetrías la mayor parte del tiempo, lo que significa que a veces hay violaciones. Pero los físicos nunca han observado una violación de una combinación de las tres simetrías al mismo tiempo. Si toma todas las interacciones observadas en la naturaleza y cambia las cargas, toma la imagen especular y la ejecuta hacia atrás en el tiempo, esas interacciones se comportan exactamente igual.

Esta simetría fundamental recibe un nombre: simetría CPT, por carga (C), paridad (P) y tiempo (T).




Creando materia oscura

Vivimos en un universo en expansión. Este universo está lleno de muchas partículas que hacen muchas cosas interesantes, y la evolución del universo avanza en el tiempo. Si extendemos el concepto de simetría CPT a todo nuestro cosmos, entonces nuestra visión del universo no puede ser la imagen completa.

En cambio, debe haber más. Para preservar la simetría CPT en todo el cosmos, debe haber un cosmos de imagen especular que equilibre el nuestro. Este cosmos tendría todas las cargas opuestas a las que tenemos nosotros, se voltearía en el espejo y retrocedería en el tiempo. Nuestro universo es sólo uno de un gemelo. En conjunto, los dos universos obedecen a la simetría CPT.

Los investigadores del estudio luego preguntaron cuáles serían las consecuencias de tal universo.

Encontraron muchas cosas maravillosas.

Por un lado, un universo que respete la CPT se expande naturalmente y se llena de partículas, sin la necesidad de un largo período teorizado de rápida expansión conocido como inflación. Si bien hay mucha evidencia de que ocurrió un evento como la inflación, la imagen teórica de ese evento es increíblemente borrosa. Es tan confuso que hay mucho espacio para propuestas de alternativas viables.

En segundo lugar, un universo que respete la CPT agregaría algunos neutrinos adicionales a la mezcla. Hay tres sabores conocidos de neutrinos: el neutrino electrónico, el neutrino muón y el neutrino tau. Extrañamente, los tres sabores de estos neutrinos son zurdos (refiriéndose a la dirección de su giro en relación con su movimiento). Todas las demás partículas conocidas por la física tienen variedades de mano izquierda y derecha, por lo que los físicos se han preguntado durante mucho tiempo si hay neutrinos de mano derecha adicionales.

Un universo que respete la CPT exigiría la existencia de al menos una especie de neutrino diestro. Esta especie sería en gran parte invisible para los experimentos físicos, y solo influiría en el resto del universo a través de la gravedad.

Pero una partícula invisible que inunda el universo y solo interactúa a través de la gravedad se parece mucho a la materia oscura.

Los investigadores encontraron que las condiciones impuestas por obedecer la simetría CPT llenarían nuestro universo con neutrinos dextrógiros, suficientes para explicar la materia oscura.

Predicciones en el espejo

Nunca tendríamos acceso a nuestro gemelo, el universo espejo CPT, porque existe «detrás» de nuestro Big Bang, antes del comienzo de nuestro cosmos. Pero eso no significa que no podamos probar esta idea.

Los investigadores encontraron algunas consecuencias observacionales de esta idea. Por un lado, predicen que las tres especies conocidas de neutrinos zurdos deberían ser partículas de Majorana, lo que significa que son sus propias antipartículas (en contraste con las partículas normales como el electrón, que tienen contrapartes de antimateria llamadas positrones). A partir de ahora, los físicos no están seguros de si los neutrinos tienen esta propiedad o no.

Además, predicen que una de las especies de neutrinos no debería tener masa. Actualmente, los físicos solo pueden establecer límites superiores en las masas de neutrinos. Si los físicos alguna vez pueden medir de manera concluyente las masas de los neutrinos, y uno de ellos no tiene masa, eso reforzaría en gran medida la idea de un universo simétrico CPT.

Por último, en este modelo nunca ocurrió el evento de inflación. En cambio, el universo se llenó de partículas naturalmente por sí mismo. Los físicos creen que la inflación sacudió el espacio-tiempo en un grado tan tremendo que inundó el cosmos con ondas gravitacionales. Muchos experimentos están a la caza de estas ondas gravitacionales primordiales. Pero en un universo con simetría CPT, tales ondas no deberían existir. Entonces, si esas búsquedas de ondas gravitacionales primordiales resultan vacías, eso podría ser una pista de que este modelo de universo espejo CPT es correcto.

Publicado originalmente en Live Science.
Fuente: Space.com, Paul Sutter. Astrofísico en SUNY Stony Brook y el Instituto Flatiron en la ciudad de Nueva York. Recibió su doctorado en Física de la Universidad de Illinois en Urbana-Champaign.

Noticias relacionadas:

Científicos encuentran microplásticos en sangre humana por primera vez

Ya se habían detectado microplásticos en los océanos, el aire y los alimentos; ahora los investigadores los han encontrado en la sangre humana.

Los científicos han descubierto microplásticos en la sangre humana por primera vez, advirtiendo que las partículas ubicuas también podrían estar llegando a los órganos.


Las pequeñas piezas de plástico, en su mayoría invisibles, ya se han encontrado en casi todas partes de la Tierra, desde los océanos más profundos hasta las montañas más altas, así como en el aire, el suelo y la cadena alimentaria.

Un estudio holandés publicado en la revista Environment International el jueves examinó muestras de sangre de 22 voluntarios sanos y anónimos y encontró microplásticos en casi el 80 por ciento de ellos.

La mitad de las muestras de sangre mostraban rastros de plástico PET, ampliamente utilizado para fabricar botellas de bebidas, mientras que más de un tercio tenían poliestireno, utilizado para envases desechables de alimentos y muchos otros productos.

«Esta es la primera vez que hemos podido detectar y cuantificar» tales microplásticos en la sangre humana , dijo Dick Vethaak, ecotoxicólogo de la Vrije Universiteit Amsterdam.

«Esta es una prueba de que tenemos plásticos en nuestro cuerpo, y no deberíamos», dijo a la AFP, y pidió más investigación para investigar cómo podría estar afectando la salud.
«¿A dónde va en tu cuerpo? ¿Se puede eliminar? ¿Excretar? ¿O se retiene en ciertos órganos, acumulándose tal vez, o incluso es capaz de atravesar la barrera hematoencefálica?»




El estudio dijo que los microplásticos podrían haber ingresado al cuerpo por muchas rutas: a través del aire, el agua o los alimentos, pero también en productos como pastas de dientes, brillos labiales y tinta para tatuajes.

«Es científicamente plausible que las partículas de plástico puedan transportarse a los órganos a través del torrente sanguíneo», agregó el estudio.

Vethaak también dijo que podría haber otros tipos de microplásticos en la sangre que su estudio no detectó; por ejemplo, no pudo detectar partículas más grandes que el diámetro de la aguja utilizada para tomar la muestra.

El estudio fue financiado por la Organización Holandesa para la Investigación y el Desarrollo de la Salud, así como por Common Seas, un grupo con sede en el Reino Unido que tiene como objetivo reducir la contaminación plástica.

Alice Horton, científica de contaminantes antropogénicos del Centro Nacional de Oceanografía de Gran Bretaña, dijo que el estudio demostró «inequívocamente» que había microplásticos en la sangre.

«Este estudio contribuye a la evidencia de que las partículas de plástico no solo han invadido el medio ambiente, sino que también están invadiendo nuestros cuerpos», dijo al Science Media Center.

Fay Couceiro, lectora de biogeoquímica y contaminación ambiental en la Universidad de Portsmouth, dijo que a pesar del pequeño tamaño de la muestra y la falta de datos sobre el nivel de exposición de los participantes, sintió que el estudio era «sólido y resistirá el escrutinio».

También pidió más investigación.

«Después de todo, la sangre une todos los órganos de nuestro cuerpo y si el plástico está allí, podría estar en cualquier parte de nosotros».

________________________________________
Fuente: Heather A. Leslie et al, Discovery and quantification of plastic particle pollution in human blood, Environment International (2022). DOI: 10.1016/j.envint.2022.107199. Información de la revista: Environment International y Phys Org.

Noticias relacionadas:

Diminuta estrella colapsada disparó un gigantesco haz de materia y antimateria donde la energía se convierte en masa

Una estrella colapsada del tamaño de una ciudad, el púlsar PSR J2030+4415, antiguo resto de una estrella que estalló, tan densa que su gravedad deforma el espacio-tiempo cercano, ha generado un filamento de materia y antimateria (imagen abajo) que se extiende por billones de kilómetros (10^12 km), según lo revela el Observatorio Chandra de rayos X de la NASA. Este descubrimiento podría ayudar a explicar la presencia de positrones (las contrapartes de antimateria de los electrones, con carga positiva) detectados en toda la galaxia de la Vía Láctea y aquí en la Tierra.


Esta imagen del Observatorio de rayos X Chandra de la NASA y los telescopios ópticos terrestres muestra un haz extremadamente largo de materia y antimateria que se extiende desde un púlsar relativamente pequeño. El panel de la izquierda muestra aproximadamente un tercio de la longitud del haz del púlsar conocido como PSR J2030+4415 (J2030 para abreviar), que se encuentra a unos 1.600 años luz de la Tierra.

J2030 es un objeto denso del tamaño de una ciudad que se formó a partir del colapso de una estrella masiva y actualmente gira unas tres veces por segundo. Los rayos X de Chandra (azul) muestran la parte donde las partículas que fluyen desde el púlsar a lo largo de las líneas del campo magnético se mueven a aproximadamente un tercio de la velocidad de la luz. Una vista de primer plano del púlsar en el panel derecho muestra los rayos X creados por las partículas que vuelan alrededor del propio púlsar. A medida que el púlsar se mueve por el espacio a más de un millón y medio de kilómetros por hora, algunas de estas partículas escapan y crean el extenso filamento. En ambos paneles, se han utilizado datos de luz óptica del telescopio Gemini en Mauna Kea en Hawai y aparecen en rojo, marrón y negro. La longitud total del filamento se muestra en una imagen separada. (Crédito de rayos X: NASA/CXC/Stanford Univ./M. de Vries)

Aunque la gran mayoría del Universo consiste en materia ordinaria en lugar de antimateria, los científicos continúan encontrando en los detectores de la Tierra evidencia de una gran cantidad relativamente de positrones.

Los púlsares, ¿son la fuente de la antimateria?

¿Cuáles son las posibles fuentes de esta antimateria? Los investigadores de este nuevo estudio de Chandra sobre J2030 creen que los púlsares como este pueden ser una respuesta. La combinación de dos extremos, la rotación rápida y los campos magnéticos elevados de los púlsares, conduce a la aceleración de partículas y a la radiación de alta energía que crea pares de electrones y positrones.




La ecuación de Einstein E = mc^2 está invertida

El proceso habitual de convertir masa en energía determinado por la famosa ecuación E = mc^2 de Einstein se invierte y la energía se convierte en masa. Los campos magnéticos extremos también ayudan a separar los electrones cargados negativamente y los positrones cargados positivamente para que no se aniquilen entre sí.

Un artículo de los astrónomos Martjin de Vries y Roger Romani de la Universidad de Stanford explica que los púlsares generan vientos de partículas cargadas que generalmente están confinadas dentro de sus poderosos campos magnéticos.

Genera una fuga de partículas

El púlsar, según el artículo, está viajando a través del espacio interestelar a aproximadamente 800 mil kilómetros por hora, con el viento detrás de él. Una descarga de gas en proa se mueve frente al púlsar, similar a la acumulación de agua frente a un barco en movimiento. Sin embargo, hace unos 20 o 30 años, el movimiento del arco de choque parece haberse estancado y el púlsar lo alcanzó, lo que resultó en una colisión que probablemente provocó una fuga de partículas donde el campo magnético del viento del púlsar se vinculó con el campo magnético interestelar.

Forma una «boquilla»

Como resultado, explican los autores, los electrones y positrones de alta energía podrían haber salido a chorros a través de una «boquilla» formada por la conexión con la Vía Láctea. Los fuertes campos magnéticos del púlsar pueden colimar las partículas subatómicas en un estrecho chorro relativista de alta densidad que permite que los positrones escapen a grandes distancias interestelares. Las líneas del campo magnético del púlsar luego se reconectan con los campos magnéticos ambientales que impregnan nuestra Vía Láctea, proporcionando un conducto para que los positrones viajen distancias extremas dentro de nuestra galaxia a un tercio de la velocidad de la luz.

Piense en ello como una presa que puede abrirse (parcialmente) para dejar pasar un poco de agua.

“La ‘boquilla’ no debe considerarse literalmente”, dijo Martijn Nicolaas De Vries a The Daily Galaxy .“Más bien”, dice, “es una forma de ilustrar que sólo una pequeña fracción de los electrones y positrones (los más energéticos) se filtran al medio interestelar. El factor más importante aquí es la distancia entre el púlsar y el vértice del arco de choque, que se denomina distancia de separación. Cuanto más pequeño es, más partículas escapan. La reconexión magnética hace que este proceso sea más fácil en un lado del choque específicamente, de modo que las partículas se filtren por un lado pero no por el otro. Una forma alternativa es considerarlo como una presa que puede abrirse (parcialmente) para dejar pasar un poco de agua. Para J2030, la represa estuvo cerrada la mayor parte del tiempo. Pero debido a que golpeó este muro de densidad hace unas décadas, la distancia de separación disminuyó. Y debido a eso, por un tiempo (quizás 10 años más o menos) la represa se abrió un poco y parte del agua (es decir, los electrones/positrones) salió.

Previamente, los astrónomos han observado grandes halos alrededor de púlsares cercanos en luz de rayos gamma que implican que los positrones energéticos generalmente tienen dificultades para filtrarse hacia la galaxia. Esto socava la idea de que los púlsares explican el exceso de positrones que detectan los científicos. Sin embargo, los filamentos de púlsar que se han descubierto recientemente, como J2030, muestran que las partículas en realidad pueden escapar al espacio interestelar y, finalmente, podrían llegar a la Tierra.
________________________________________
Artículo original: Maxwell Moe , astrofísico, NASA Einstein Fellow, Universidad de Arizona a través de Martjin de Vries , Chandra X-Ray Observatory y ArXiv.org – The Daily Galaxy.

Noticias relacionadas: