Archivo de la categoría: Cosmología

La materia oscura podría agruparse para formar planetas

Una nueva teoría sugiere que la materia oscura podría fusionarse en estructuras masivas.

Podría ser que las estrellas oscuras no sean solo para los fanáticos de Grateful Dead (autores del tema Dark Star). En un nuevo artículo subido a arXiv, el profesor de astrofísica de la Universidad de Rutgers, Matthew R. Buckley, presenta una hipótesis verdaderamente alocada: podría ser posible construir mundos a partir de la materia oscura.

Pero todo le llegó desde un ángulo inusual: quería demostrar que las estructuras de materia oscura eran imposibles. En una publicación de blog, Buckley esbozó su pensamiento. A él le gusta la ciencia ficción; también le gusta separar la mala ciencia. Los planetas de materia oscura parecían imposibles. Pero a medida que profundizaba en las matemáticas, se dio cuenta de que estaba equivocado.

Entonces, ¿cuál fue el pensamiento inicial detrás de por qué la materia oscura no podría formar un planeta? Es algo como esto: tenemos evidencia indirecta de materia oscura pero no sabemos de qué está hecha. Cuando los astrónomos mapean nuestra galaxia y otras galaxias, pueden sacar todos los objetos conocidos y los gases visibles y descubrir estructuras invisibles que indican grandes nubes de materia oscura.







Pero sabemos que estas no son materia normal (también conocida como bariónica). Se agrupan de una manera que sugiere que no se agrupa ordenadamente como la materia normal. Según Buckley, esto puede deberse a la falta de un mecanismo de enfriamiento. Tal como escribe, la materia normal puede ser frenada por fotones lo suficiente como para juntarse y acumularse. Pero bajo condiciones típicas, la materia oscura simplemente tendría una serie de inicios en falso y quedaría agrupada en nubes difusas.

«Si existe más física interna para la materia oscura, entonces se puede imaginar que a medida que los cúmulos de material comienczan a acumularse juntos, se obtendría algún proceso que libere energía, como lo hace la fusión para los bariones», dice Buckley. Él y su coautor, Anthony DiFranzo, no especularon demasiado sobre toda la física interna de esto. Pero creen que «si queremos comenzar a hacer predicciones específicas de lo que debemos buscar, deberíamos comenzar a pensar más sobre todas estas diferentes posibilidades, ya que una fuente de energía en el sector oscuro cambiará la manera en que se distribuye la materia oscura.»

Entonces, un mecanismo para enfriar la materia oscura podría no funcionar a escala para formar galaxias enteras u otras megaestructuras naturales, pero bajo este modelo podría formar objetos más pequeños.

Ha habido propuestas de estrellas y otros objetos que utilizan la materia oscura junto con la materia bariónica para producir una extraña quimera. Pero este modelo probablemente sería todo, o más que nada, materia oscura, en lugar de ser mayoritariamente bariónico con neutralinos que produzcan un comportamiento extraño en el interior.

Sugieren que una fuerza de «electromagnetismo oscuro» podría enfriar suficientemente la materia oscura para formar objetos a partir de estos halos de materia oscura.

Los objetos más grandes posibles de materia oscura serían un millón de veces la masa del Sol. Eso es tan grande como los agujeros negros masivos intermedios más grandes o los agujeros negros supermasivos más pequeños. La materia oscura también podría formar algo así como una galaxia enana, o un grupo de objetos de materia oscura.

Pero de acuerdo con este documento, objetos y estructuras tan grandes, si es que existen, pueden haberse roto con el tiempo, dejando atrás objetos mucho más pequeños.

«El más masivo de estos objetos terminaría colapsándose en agujeros negros porque probablemente no habría fuerzas internas lo suficientemente fuertes como para detener ese colapso, como ocurre con los bariones», dice Buckley. «Los agujeros negros serían como cualquier otro agujero negro: la gravedad no distingue entre la materia oscura y los bariones, por lo que un agujero negro es el mismo independientemente del material que entra en él».

Encontrar cualquiera de estos objetos podría ser difícil. La materia oscura no interactúa mucho con la materia bariónica… y eso incluye los fotones, lo que significa que no se desprende ninguna fuente de luz. «Hay una fuerza como el electromagnetismo, pero no es electromagnetismo», dice Buckley. «Entonces no se puede ver realmente la masa de gas congelado de materia oscura, o planetoide, o lo que sea que se forme con la materia oscura, porque no está interactuando con la luz».

Entonces, ¿cómo sería pisar un planeta de materia oscura?

«Si intentara aterrizar en la superficie, uno se hundiría completamente, ya que no hay repulsión electrostática entre sus átomos y la materia oscura», dice Buckley. «Sin embargo, sentirías la gravedad del objeto, por lo que te hundirías».

Fuente: Discovery Magazine. Aportado por Eduardo J. Carletti

Más información:

Hallan las primeras evidencias de las ondas gravitacionales predichas por Einstein

Se trata del hallazgo astronómico más importante de la historia. Kip Thorne, el pionero del experimento que ha captado la primera onda gravitacional dice que el crédito del hallazgo es para los científicos jóvenes.

¿De dónde ha salido esa onda gravitacional? La destrucción de dos invisibles agujeros negros generó más energía que la luz que emiten todas las estrellas del Universo visible.







Incluso para los astrofísicos acostumbrados a manejar conceptos como supernovas, estrellas de neutrones y agujeros negros, la señal que han captado los dos observatorios LIGO es extraordinaria: un mero “blip” de apenas dos décimas de segundo tan breve que, para que los asistentes a la conferencia de prensa pudieran escucharlo, ha habido que pasar el audio varias veces a velocidad muy lenta.

Ese modesto chasquido contiene información sobre una catástrofe cósmica de proporciones inauditas: el choque —más bien la fusión— de dos agujeros negros de masa mediana, que giraban alocadamente uno en torno a otro, emitiendo en cada giro una perturbación gravitatoria. Es un proceso similar al de los electrones que al moverse por los circuitos de una antena emiten ondas de radio. Sólo que aquí, los electrones son en realidad singularidades, enormes masas concentradas en un simple punto al que su propia gravedad aísla de nuestro universo.

Los dos agujeros negros que protagonizaron la catástrofe se encontraba a unos 1.300 millones de años luz de nosotros, más o menos en la dirección general de la Gran Nube de Magallanes. Con sólo dos detectores, es difícil afinar más; si hubiese estado en marcha un tercero —como el VIRGO europeo, situado cerca de Pisa—, quizá hubiese podido precisarse más.

Ese modesto chasquido contiene información sobre una catástrofe cósmica de proporciones inauditas

Los dos agujeros negros tenían masas 36 y 29 veces mayores que nuestro Sol. Al principio, habían estado separados por una distancia cómoda y su rotación mutua se hacía a velocidades razonables. Pero en cada giro, emitían una debilísima perturbación gravitacional, con el resultado de ir perdiendo paulatinamente energía, acercándose cada vez más entre sí y acelerando su movimiento. A medida que éste se hacía más rápido, las ondas gravitacionales aumentaban su frecuencia, que fue pasando paulatinamente desde unos tonos bajísimos a otros más y más altos.

En sus momentos finales, los dos agujeros negros giraban a aproximadamente la velocidad de la luz. Y recordemos que estamos hablando de unos cuerpos con la masa de treinta soles. En esas condiciones, la frecuencia de las ondas iba aumentando hasta alcanzar valores comparables a los de una nota de piano. Ese es el “blip” que detectaron los observatorios, con una diferencia de sólo 7 milisegundos, primero en Washington y después en Louisiana. Ese es el tiempo que tardó la onda en cubrir los 3.000 kilómetros que separan los dos detectores LIGO. Y esa diferencia es la que ha permitido triangular muy burdamente la posición de la fuente.

La frecuencia de las ondas iba aumentando hasta alcanzar valores comparables a los de una nota de piano

Como si fueran dos bolitas de mercurio que entran en contacto, después de la colisión los dos agujeros negros se fusionaron en uno solo de 62 masas solares. Efectivamente, las masas originales no suman. La diferencia, unos tres soles, se convirtió en una titánica oleada energía: en gran parte la onda detectada son sus restos fósiles. Entre perturbaciones gravitatorias y radiación electromagnética, se calcula que desprendió tanta energía como nuestro Sol en 15 billones (1012) de años. Billones europeos, o sea, unas cien veces la edad del Universo.

Por un brevísimo instante, hace más de mil millones de años, en un lugar lejano mucho más allá de nuestra galaxia, la destrucción de dos invisibles agujeros negros generó más energía que la luz que emiten todas las estrellas del Universo visible.

El fisico teórico padre de LIGO dice: “Este evento ha causado una tormenta en la que se podría viajar en el tiempo”

Kip Thorne es uno de los mayores expertos en agujeros negros del mundo. Desde ayer, también es un claro favorito al Nobel de Física. En los años setenta fue a contracorriente de la mayoría de la comunidad astronómica mundial. Al contrario que ellos, que se volcaban en el desarrollo de telescopios ópticos para captar la luz en todas sus longitudes de onda, él propuso una nueva forma de observar el cosmos, más bien de escucharlo, a través de las ondas gravitacionales. Este físico teórico ha desarrollado la mayor parte de su carrera en Caltech, donde impulsó la construcción del Observatorio de Interferometría Láser de Ondas Gravitacionales (LIGO) junto a Ronald Drever, también de Caltech, y Rainer Weiss, del MIT. Además, es una estrella de la divulgación —fue asesor científico de Interstellar— y prepara otra película con Stephen Hawking.

Ayer Thorne habló a la prensa al teléfono desde Washington, donde presentó al mundo la primera detección de una onda gravitacional y el comienzo de esa nueva era de la astronomía que impulsó hace cuatro décadas.

¿Cómo se enteró del descubrimiento?

Estaba trabajando en casa por la mañana del 14 de septiembre y me mandaron un correo para que mirara la web interna de LIGO. Allí se almacenan automáticamente los resultados del experimento. Recibe los datos de Hanford y Luisiana [lugar de los dos detectores] y hace un gráfico de las frecuencias recibidas. Y en las detecciones de ambos sitios vi lo que llamamos una señal de pitido cuya frecuencia aumenta con el tiempo. Era exactamente la señal que esperábamos que produjeran las ondas gravitacionales. La miré y dije, «Dios mío, probablemente la tenemos, esto es demasiado bueno para ser verdad».

Era exactamente la señal que esperábamos que produjeran las ondas gravitacionales. La miré y dije, «Dios mío, probablemente la tenemos, esto es demasiado bueno para ser verdad»

¿Cómo se siente tras este hallazgo?

La mayoría de los que han participado en la detección dicen que están entusiasmados. En mi caso, es un sentimiento de profunda satisfacción. He trabajado muy duro desde los años setenta, tanto en la construcción de LIGO como en el desarrollo de las simulaciones, para entender lo que vemos y que han jugado un papel fundamental.

¿Por qué son tan importantes estas ondas?

Son importantes por el futuro al que nos llevan. Por un lado hoy [por ayer] hemos hecho muchos descubrimientos pioneros. La primera detección de ondas gravitacionales llegando a la Tierra, la primera observación de dos agujeros negros chocando y uniéndose para crear uno nuevo, las simulaciones del evento, que nos permiten observar por primera vez cómo se comporta el espacio y el tiempo cuando ambos están oscilando de forma salvaje igual que en una tempestad en el océano.

Pero lo más importante es que se abre la observación humana a un nuevo tipo de radiación. Todo lo que hemos hecho hasta ahora esencialmente se basa en ondas electromagnéticas. Ahora accedemos a otro tipo de radiación completamente nuevo. En las próximas dos décadas vamos a ver el mismo desarrollo que en la astronomía convencional, comprenderemos cuatro tipos de ondas gravitacionales con diferentes periodos de oscilación y cada una nos dirá cosas muy diferentes del universo. Las ondas que hemos visto oscilan en periodos de milisegundos. Pero usando LISA, que será una antena espacial, algo así como LIGO en el espacio, vamos a captar periodos que son 1.000 veces más largos, de minutos a horas. Vamos a ver incluso periodos de años y décadas. Vamos a ver la marca que dejan en el cielo ondas que tienen periodos de miles de millones de años. Vamos a ver muchas cosas que no habíamos visto antes, y esto sucederá en las próximas dos décadas.

¿Quién debe recibir el crédito por este hallazgo?

El crédito es de los jóvenes científicos experimentales que han sacado este experimento adelante. Tanto en diseño, como en construcción, como en el análisis de datos. Es su descubrimiento.

¿Cómo sería estar cerca del evento que han observado?

Verías el tiempo acelerándose y atrasándose, verías el espacio estirarse y contraerse de forma muy violenta. Viajarías en el tiempo de alguna forma porque el tiempo correría hacia adelante más lento de lo normal y luego mucho más rápido, todo de forma salvaje. Es un evento muy breve solo dura una fracción de segundo. Así que lo que necesitamos es enviar un robot que pueda captarlo todo muy rápido. Nadie sobreviviría a un evento como este.

El CONICET explica

La teoría de la relatividad general de Albert Einstein revolucionó la física y hasta hoy contrastar a través de la observación algunos de sus postulados desvela a más de un investigador alrededor del mundo. En este sentido, las ondas gravitacionales constituyen un caso de particular interés dentro de las teorías enunciadas por él a partir de 1916. En ese entonces el físico alemán reconoció que los cuerpos más violentos del cosmos liberan parte de su masa en forma de energía a través de estas ondas, pero en primera instancia pensó que no sería posible detectarlas debido a que se originan demasiado lejos y serían imperceptibles al llegar a la Tierra. Hoy, un grupo de científicos hizo pública por primera vez la detección de este fenómeno, abriendo así una nueva ventana por la cual asomarse a entender el universo.

Por ello, Oscar Reula y Carlos Kozameh, investigadores de CONICET en el Instituto de Física Enrique Gaviola (IFEG, CONICET-UNC) hablan al respecto.

¿Qué son las ondas gravitacionales?

O.R: Serían como arrugas en el espacio-tiempo, causadas por objetos de gran tamaño que al moverse producen una onda que se propaga, como ocurre cuando una piedra cae en una laguna. Estas ondas no se deforman, viajan sin perturbarse y, si se las analiza, pueden brindar información acerca del proceso que tuvo lugar cuando se crearon. Por lo tanto, constituyen una nueva fuente para conocer el universo y es por eso que medirlas despertó tanto interés. Las ondas gravitacionales deforman el tiempo y el espacio y, en teoría, viajan a la velocidad de la luz. Su paso puede modificar la distancia entre planetas, aunque de forma muy leve.

¿De dónde vienen?

C.K: Provienen principalmente de la fusión de objetos masivos, pero estos fenómenos no son muy frecuentes y además suceden a millones de años luz del Sistema Solar, pero en general se generan por objetos muy masivos sometidos a fuertes aceleraciones o cuerpos masivos no homogéneos rotando a gran velocidad. Pueden ser fuentes de estas ondas la explosión de una supernova e incluso la formación de un agujero negro.

¿Cómo pueden ser medidas?

O.R: Para medir una onda gravitacional se puede cuantificar la distancia relativa entre dos cuerpos y la variación que sufre cuando la onda pasa. La interferometría láser es una técnica que permite registrar estas pequeñísimas magnitudes con la precisión necesaria para obtener información directa de qué es lo que ocurre en el espacio-tiempo y de la dinámica de los objetos que crearon esa onda y es la técnica utilizada por LIGO.

¿Qué es LIGO?

C.K: LIGO es un experimento de detección de ondas gravitacionales. La sigla proviene de Laser Interferometer Gravitational-Wave Observatory (Observatorio de interferometría láser de ondas gravitacionales). Su misión era confirmar la existencia de estas ondas predichas por la teoría de la relatividad general de Einstein. Se trata de un instrumento óptico de precisión.

¿Cómo funciona la interferometría láser?

O.R: En un túnel con forma de “L”, cuyos brazos miden 4 km. de largo cada uno, se emite desde el vértice un láser que viaja simultáneamente hacia dos espejos ubicados cada uno en el extremo de uno de los lados. Cuándo el láser rebota, debe volver desde los dos espejos al punto de inicio, al mismo tiempo. Si una onda atraviesa la trayectoria del láser y deforma el espacio-tiempo en esa zona, esto no ocurrirá y las distancias entre los dos brazos se acortarán. Las diferencias que se registren van a brindar la información necesaria para hacer los cálculos que determinen el origen de la onda captada.

¿Por qué es importante este descubrimiento?

O.R: Por varias razones; por un lado confirma la existencia de las ondas gravitacionales, lo cual ya se sabía indirectamente la haberse medido la aceleración de los períodos orbitales de binarias conteniendo un pulsar, esa aceleración es una consecuencia directa de la disipación de energía gravitacional por las ondas que se producen en estos sistemas. En este caso se trata de una observación directa del fenómeno; Por otro lado se trata de un instrumento de una precisión inimaginable, las distancias que se miden son del orden de las del radio del protón. De hecho, mucha gente descreía que se pudiese llegar a tales precisiones. En un instrumento maravilloso. Finalmente porque se abre una nueva ventana para escrutar el universo. Lo podemos comparar con el momento histórico cuando Galileo dirigió su primer telescopio al cielo y comenzó a ver un universo insospechado. Cada vez que hemos observado el universo con un instrumento novedoso hemos encontrado fenómenos que no habíamos imaginado antes. Creo que este será el caso con estos nuevos instrumentos, se ha creado una nueva disciplina que nos dejará boquiabiertos.

C.K: Es una confirmación de Relatividad General en límite de altas energías. Es increíble que a 100 años de su creación Einstein nos siga sorprendiendo con su inteligencia.

Fuente: El País, Conicet. Aportado por Eduardo J. Carletti

Más información:

Estructuras invisibles del tamaño de la órbita de la Tierra se esconden en la "atmósfera" de la Vía Láctea

Un ente transparente que flota en nuestra galaxia y que podría ser la clave para resolver uno de los grandes misterios del Universo.

Con la ayuda del telescopio gigante CSIRO, el astrónomo australiano Keith Bannister se ponía a escudriñar todas las noches una fuente electromagnética de la constelación de Sagitario. Buscaba algo en la Vía Láctea que fuera como un lente transparente y distorsionara lo que estaba detrás. Y así terminó encontrando una gigantesca estructura invisible, cuya existencia sólo se había insinuado en contadas ocasiones y por accidente.


Esta es una ilustración de la materia transparente encontrada por los científicos australianos

«Para empezar, no teníamos idea de cómo encontrar esta cosa. S’olo sabíamos que era un problema viejo que nadie realmente había podido resolver», le cuenta Bannister a BBC Mundo. Se trata de una masa del tamaño de la órbita de la Tierra alrededor del Sol y que se puede encontrar a unos 3.000 años luz de distancia, 1000 veces más lejos que la estrella más cercana, Próxima Centauri.







Según Bannister, estos «bultos» se encuentran en el fino gas que hay entre las estrellas de nuestra galaxia. «Son como una copa de vidrio. Si ves a través de ellos lo que está detrás se distorsiona», agrega.

La casualidad de la primera vez

La primera vez que se tuvo conocimiento de estas estructuras fue en los años 80. En esa época, los astrónomos observaban a diario una galaxia lejana y vieron que ésta tenía un comportamiento extraño. «Se hacía más y menos brillante», cuenta Bannister. «Y resultó que no era aquella galaxia la que se comportaba así, sino algo que se encontraba en nuestra galaxia que actuaba como un lente».

El tiempo pasó, la tecnología avanzó y este equipo australiano –que no trabajó con los científicos de hace 30 años– «pescó» uno de estos cuerpos extraños. Bannister y sus colegas se dieron cuenta de que podían hacerlo con el Compact Array de CSIRO. Apuntando el telescopio a un quasar llamado PKS 1939-315, en la constelación de Sagitario, vieron a un evento de lente que se prolongó durante un año. Su descubrimiento fue publicado esta semana en la revista Science.

«(Esto) podría cambiar radicalmente las ideas sobre este gas interestelar», le dice a BBC Mundo Bannister. Aunque, como ocurre con todo en la astronomía, Bannister señala: «Todo depende de lo que descubramos a continuación y de la forma exacta que tenga».

Si luce plana, como una hoja de papel, no tendrá tanta relevancia. Pero si resulta ser ovalada, como una avellana…

«Si tiene esta forma y la razón por la que tiene esta forma se debe a la gravedad… si este es el caso… esto podría ser la solución a uno de los grandes problemas de la astronomía que es dónde está toda la materia normal del Universo», explica el astrónomo.

En la astronomía hay al menos dos grandes problemas que no se han resuelto: uno es la materia oscura y el otro la materia bariónica. «Y esto no es materia oscura», asegura el astrónomo.


El telescopio Compact Array de CSIRO, en Australia, se muestra aquí bajo las luces nocturnas de la Vía Láctea

«Los astrónomos piensan que el 4% del Universo está compuesto de bariones, que forman los átomos de las cosas de las que estamos hechos; tú, yo, la Tierra, el Sol… cosas normales», explica. «El problema es que los astrónomos no podemos encontrar esas cosas normales que pensamos deben estar ahí. Están perdidas y no sabemos dónde», destaca.

Si resulta que la estructura que acaban de descubrir tiene forma de avellana o pelota de tenis, entonces es probable que todos esos bariones se escondan dentro de estos lentes. Pero Bannister se muestra cauteloso. «No estoy seguro de nada hasta que no lo mida (bien)».

Por lo pronto disfruta de la satisfacción de haber dado con esta estructura que tiene a muchos astrónomos –él incluido– desconcertados.

«Tengo tres hijos y cada día nos poníamos en el telescopio, y recibía los datos con mis hijos sentados en mi regazo. Ellos me preguntaban por lo que estaba ocurriendo y yo les mostraba la información que realmente no entendían», relata. «Pero yo estaba emocionado y ellos estaban emocionados por estos datos hermosos que el telescopio nos estaba ofreciendo. Eso fue una gran experiencia».

Fuente: BBC Mundo. Aportado por Eduardo J. Carletti

Más información: