Archivo de la categoría: Nanotecnología

Plasmones del grafeno, una luz para los dispositivos de nueva generación

Investigadores de CIC nanoGUNE, el ICFO y Graphenea proponen una plataforma tecnológica basada en antenas metálicas que permiten atrapar y controlar la luz en grafeno, un material de un solo átomo de espesor. La luz guiada y confinada en este material, de un solo átomo de espesor, puede ser dirigida y curvada siguiendo la óptica convencional, lo que abre nuevas oportunidades para el desarrollo de dispositivos y circuitos fotónicos más pequeños y rápidos

Los circuitos y dispositivos ópticos podrían realizar el procesamiento de señales y la computación mucho más rápidamente. «Sin embargo, aunque la luz es muy rápida, necesita demasiado espacio», explica Rainer Hillenbrand, profesor Ikerbasque en nanoGUNE y la Universidad del País Vasco (UPV/EHU). De hecho, la propagación de la luz necesita al menos el espacio de la mitad de su longitud de onda, que es mucho más grande que los componentes electrónicos básicos de última generación en nuestros ordenadores. Por esa razón, surge el desafío de comprimir la luz y controlar su propagación en la nanoescala a través de un material dado.

Una posible solución podría ser el grafeno, material de una sola capa de átomos de carbono con propiedades extraordinarias. La longitud de onda de la luz capturada por una capa de este material puede ser reducida considerablemente, en un factor de 10 a 100, en comparación con la luz que se propaga en el espacio libre. Como consecuencia, esta luz que se propaga a lo largo de la capa de grafeno —llamada plasmón del grafeno— requiere mucho menos espacio. Pero la transformación de manera eficiente de la luz en plasmones del grafeno y su manipulación con un dispositivo compacto es todo un reto tecnológico.

Una nanobarra de metal sobre grafeno puede actúar como una antena para la luz

Ahora un equipo de investigadores de nanoGUNE, ICFO y Graphenea –miembros del Grafene Flagship de la UE– demuestra que el concepto de antena comúnmente utilizado para las ondas de radio podría ser una solución prometedora. El equipo muestra que una barra de metal de tamaño nanométrico colocada sobre el grafeno puede captar luz infrarroja (actúando como una antena para la luz) y transformarla en plasmones del grafeno, de forma análoga a una antena de radio que convierte las ondas de radio en ondas electromagnéticas en un cable metálico. El estudio se publica en la revista Science.

«Presentamos una plataforma tecnológica versátil, basada en antenas ópticas resonantes, para el lanzamiento y el control de la propagación de plasmones del grafeno, lo que representa un paso esencial para el desarrollo de circuitos plasmónicos con grafeno», comenta el líder del equipo, Rainer Hillenbrand.

Por su parte, Pablo Alonso-González, quien llevó a cabo los experimentos en nanoGUNE, destaca algunas de las ventajas que ofrece el dispositivo de antena: «La excitación de los plasmones del grafeno es puramente óptica, el dispositivo es compacto y la fase y los frentes de onda de los plasmones se pueden controlar directamente mediante la adaptación de la geometría de las antenas. Esto es esencial para el desarrollo de aplicaciones ópticas basadas en el enfoque y guiado de luz».

El equipo de investigación también realizó estudios teóricos. Alexey Nikitin, Ikerbasque Fellow en nanoGUNE y autor de los cálculos, explica que de acuerdo a la teoría, «la operación de nuestro dispositivo es muy eficiente, y todas las futuras aplicaciones tecnológicas dependerán, esencialmente, de las limitaciones en la fabricación y la calidad del grafeno».

Nanoantenas de oro sobre grafeno

Los experimentos muestran que los principios de la óptica convencional se aplican a los plasmones del grafeno

Basándose en los cálculos de Nikitin, el grupo de Nanodispositivos de nanoGUNE, liderado por los investigadores Ikerbasque Luis Hueso y Félix Casanova, fabricó nanoantenas de oro sobre grafeno proporcionado por Graphenea. Posteriormente, el grupo de Nanoóptica utilizó el microscopio de campo cercano NEASPEC para visualizar cómo los plasmones del grafeno se ponen en marcha y se propagan a lo largo de la capa de grafeno. En las imágenes, los investigadores vieron que, efectivamente, las ondas sobre el grafeno se propagan lejos de la antena, de la misma forma que se propagan las olas en una superficie de agua cuando se lanza una piedra a la misma.

Con el fin de probar si la propagación de luz a lo largo de una capa de carbono de un solo átomo de grosor sigue las leyes de la óptica convencional, los investigadores diseñaron distintos experimentos para enfocar y refractar la luz. Para el experimento de enfoque, curvaron la antena. Las imágenes resultantes mostraron que los plasmones del grafeno se concentran a una cierta distancia de la antena, como cuando un haz de luz se focaliza con una lente o espejo cóncavo.

El grupo también observó que los plasmones del grafeno se refractan (cambian de dirección) cuando pasan a través de una doble capa de grafeno en forma de prisma, de forma análoga a como se flexiona un haz de luz al pasar a través de un prisma de cristal.

 

 

«La principal diferencia es que el prisma de grafeno es de solo dos átomos de espesor. Es el prisma óptico refractor más delgado que se conoce», dice Rainer Hillenbrand. Curiosamente, los plasmones del grafeno cambian de dirección porque la conductividad es mayor en el prisma de dos átomos de espesor que en la capa de un solo átomo que lo rodea. En el futuro, tales cambios de conductividad en el grafeno podrían ser establecidos por medios electrónicos simples, lo que permitiría un control altamente eficiente de la refracción, entre otros, para aplicaciones de guiado de luz.

En definitiva, los experimentos muestran que los principios fundamentales y más importantes de la óptica convencional también se aplican a los plasmones del grafeno, es decir, a luz extremadamente comprimida que se propaga a lo largo de una sola capa de átomos de carbono. Los futuros desarrollos basados en estos resultados podrían conducir a circuitos y dispositivos ópticos extremadamente miniaturizados que podrían ser útilizados en aplicaciones de detección y computación.

Referencia bibliográfica:

P. Alonso-González, A.Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L.E. Hueso 1,5 and R. Hillenbrand 1,5. “Controlling grapheme plasmons with resonant metal antennas and spatial conductivity patterns” Science (2014) DOI: 10.1126/science.1253202.

Fuente: Sinc. Aportado por Eduardo J. Carletti

Más información:

Nanovarillas que generan interferencias actúan como nanoantenas ópticas

Investigadores españoles y belgas han identificado algunas propiedades de nanopartículas metálicas con forma de nanovarillas. En concreto, han observado que operan en modos energéticos de orden superior, lo que abre nuevas vías en el campo de las nanoantenas

Un experimento realizado por un equipo internacional, en el que participan investigadores del Instituto de Estructura de la Materia del CSIC, de la Universidad Católica de Lovaina (Bélgica) y de la Escuela de Ingeniería y Arquitectura de la Universidad de Zaragoza, abre las puertas a nuevos avances en el mundo de las nanopartículas metálicas alargadas. Se denominan nanovarillas o nanorods en inglés, y son uno de los sistemas más utilizados en el estudio de las interacciones entre luz y materia a escala nanométrica.

Estas nanovarillas tienen aplicaciones en técnicas de imagen en sistemas biológicos, siendo utilizadas como sondas locales. También constituyen un ánalogo a altas frecuencias de las antenas clásicas que operan en frecuencias de radio, presentes como componentes en aparatos de telefonía móvil y ordenadores, por ejemplo.

Alargadas y con preciados metales

Estas estructuras tienen tamaños típicamente menores que la longitud de las ondas electromagnéticas que constituyen la luz. Además, su longitud es mucho mayor que su anchura y están fabricadas con metales nobles tales como la plata o el oro. En la mayoría de los casos, las nanovarillas se diseñan de forma tal que a la longitud de onda de interés actúan en su modo fundamental (el de más baja energía), también llamado de media onda o dipolar.

Sin embargo, en este trabajo ha permitido obtener una información valiosa acerca de cómo estas nanovarillas operan en modos de orden superior, poniendo de manifiesto la existencia de fenómenos de interferencia entre los distintos modos. Hasta la fecha se pensaba que esto sólo ocurría en nanoestructuras más complejas, o con formas geométricas intrincadas.

El estudio, que publica la revista NanoLetters, ofrece una explicación teórica del fenómeno, apoyado por resultados experimentales. Además, facilita la posibilidad de operar con estas nanoestructuras en modos de orden superior ampliando el rango de aplicabilidad de estos sistemas.

 

 

Referencia bibliográfica:

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V.V. Moshchalkov, J.A. Sánchez-Gil. «Mode Parity-Controlled Fano- and Lorentz-like Line Shapes Arising in Plasmonic Nanorods», Nano Lett., 14: 2322-2329, 2014.

Fuente: Sinc. Aportado por Eduardo J. Carletti

Más información:

Los virus, nanomáquinas que evolucionan

La investigación por microscopía electrónica y difracción de rayos X ha mostrado que las cápsidas de los virus poseen una muy elevada simetría, lo que les permite construirla empleando una sola proteína o un número muy reducido de ellas, en el número de copias necesario para que se produzca el autoensamblaje molecular

Las células son las unidades estructurales y funcionales de la vida, tanto en los microorganismos como en los seres pluricelulares. Sin embargo, en la naturaleza existen otras entidades subcelulares que contribuyen activamente a la dinámica y evolución de los ecosistemas: los viroides y los virus. En ambos casos existe una interesante controversia científica acerca de si deben ser considerados o no como seres vivos, dado que ambos son capaces de replicarse y evolucionar (dos características fundamentales de la vida), pero siempre a expensas de la maquinaria metabólica que proporciona la célula a la que parasitan: por tanto no son autónomos y, de hecho, cuando están fuera de su célula hospedadora se degradan rápidamente si no infectan una nueva diana.

Sin entrar en detalles, podemos decir que los viroides son moléculas de ácido ribonucleico (ARN) que poseen entre 250 y 400 nucleótidos (nt) de longitud, y que a pesar de no codificar ninguna proteína ni estar recubiertas por una envoltura proteica, son capaces de infectar numerosas especies de plantas y producir enfermedades en ellas.

Por su parte, los virus son entidades replicativas compuestas por un genoma (de ARN o de ADN) protegido por una cobertura proteica denominada «cápsida», y en algunas familias virales por una membrana lipídica exterior. La imagen que sigue muestra un ejemplo del genoma completo de un virus, visualizado por AFM. Se trata de una molécula de RNA de doble cadena y unos 4.600 nt, que constituye el genoma del virus denominado «L-A», que infecta a la levadura Saccharomyces cerevisiae (muestra obtenida en el Instituto de Microbiología Bioquímica, CSIC-U. de Salamanca, e imagen tomada sobre una superficie de mica en el Centro de Astrobiología, CSIC-INTA).

Un ejemplo del genoma completo de un virus Un ejemplo del genoma completo de un virus. CSIS-INTA

Los virus son parásitos capaces de infectar a cualquiera de las especies celulares conocidas (de animales, plantas, hongos o microorganismos unicelulares) y se han encontrado en todos los entornos en los que se han buscado, incluyendo los más extremos de nuestro planeta. Su existencia ya fue sugerida a mediados del siglo XIX cuando uno de los padres de la microbiología, Louis Pasteur, fue incapaz de encontrar el microorganismo causante de una enfermedad entonces mortal: la rabia.

Dado que ese patógeno atravesaba los filtros con menor tamaño de poro que entonces se podían construir (escapando por tanto a los sistemas de esterilización por filtración), y que no se detectaba a través del microscopio óptico, concluyó que la rabia era causada por algo muy diferente a los «microbios» o «toxinas» entonces conocidos: bacterias, hongos y protozoos. En efecto, hoy sabemos que Pasteur estaba luchando contra un enemigo que en aquella época era invisible, porque sus dimensiones se encuentran en el rango de los nanómetros.

Primeros virus descubiertos en el siglo XIX

Los primeros virus fueron descubiertos a finales del siglo XIX, aunque no pudieron ser observados directamente hasta la década de 1930, gracias a un avance tecnológico trascendental: la microscopía electrónica. El tamaño de cada partícula viral o «virión» depende de la familia a la que pertenece, pero por lo general se sitúa entre los 20 y los 400 nanómetros de diámetro: los más grandes tienen casi la mitad del tamaño de una bacteria típica como E. coli, mientras que los más pequeños son unas 50 veces menores que ella.

La investigación por microscopía electrónica y difracción de rayos X ha mostrado que las cápsidas de los virus poseen una muy elevada simetría, lo que les permite construirla empleando una sola proteína o un número muy reducido de ellas, en el número de copias necesario para que se produzca el autoensamblaje molecular.

Los virus con simetría isométrica tienen forma de icosaedro o esfera, mientras que los de simetría helicoidal originan morfologías filamentosas o de bastón. Los mecanismos que emplean los virus para hacer copias de sí mismos son muy variados, pero en todos los casos se basan en que infectan un tipo celular concreto, se replican en su interior (produciendo mutaciones, más numerosas en el caso de los virus con genoma de RNA), y salen (unas veces rompiendo la célula infectada y otras no) para infectar otras células y continuar la infección. Los virus son, por tanto, nanomáquinas replicativas que han ido apareciendo en la naturaleza y evolucionando en paralelo a las células desde el origen de la vida.

Debido a sus dimensiones, durante los últimos años la investigación en virología se ha beneficiado de muchos de los avances en nanotecnología. Así, por ejemplo, gracias a técnicas como las pinzas ópticas se ha podido estudiar las características del nanomotor molecular con el que el virus bacteriófago denominado Phi29 empaqueta su genoma de ADN una vez que ha concluido su ciclo infectivo en la bacteria Bacillus subtilis, como describimos en un artículo anterior. Por otra parte, mediante microscopía de fuerza atómica (AFM) se está profundizando en la caracterización estructural de algunos virus completos y sus componentes moleculares en condiciones nativas. En paralelo, la variante de la técnica de AFM conocida como «espectroscopía de fuerzas» permite estudiar características físicas de partículas virales individuales como es su resistencia mecánica a la compresión por la micropalanca. Por ejemplo, investigadores de la Universidad Autónoma de Madrid y del Centro de Biología Molecular «Severo Ochoa» (CSIC-UAM) están estudiando el papel que desempeña la presión interior ejercida por el genoma de ADN del denominado «virus diminuto del ratón» en el mantenimiento de la estructura de la partícula viral, para lo que analizan por separado viriones completos y cápsidas vacías, tanto en su variante natural como incluyendo proteínas con determinadas mutaciones.

Nanotubos naturales, LAVAL UNIVERSITY

También se trabaja con virus como sistemas modelo en el campo de la nanofluídica, tal como ejemplifica un estudio realizado por el CIC-Nanogune de San Sebastián utilizando el virus del mosaico del tabaco, que infecta a la planta Nicotiana tabacum. La cápsida de este virus (mostrada en la siguiente imagen de microscopía electrónica de transmisión, con una referencia de tamaño de 100 nm), posee simetría helicoidal y su forma es cilíndrica, con unos 300 nm de longitud, 18 nm de diámetro externo y 4 nm de diámetro interno. Mediante la combinación de estos nanotubos naturales con sistemas de micro- y nanofluídica, depositando nanogotas en ambos extremos de la cápsida se puede estudiar la difusión de iones metálicos y la migración de nanopartículas de oro por su interior. Con ello se analiza cómo fluyen los líquidos en tubos con diámetros menores de 30 nm, un límite a partir del cual se sabía poco sobre su comportamiento hidrodinámico.

 

 

Otra aplicación prometedora de los virus en bionanotecnología consiste en aprovechar que son nanomáquinas naturales muy especializadas, capaces de llegar a células concretas y entrar en ellas. Así, las cápsidas de virus desprovistas de su genoma (o bien virus completos modificados para eliminar su capacidad infectiva) pueden utilizarse como nanosistemas dispensadores de fármacos, que tras ser inyectados en el individuo enfermo reconocen sus dianas (por ejemplo, células tumorales) y liberan en su interior el cargamento terapéutico. En la actualidad existen distintas líneas de investigación en este campo, donde los virus están demostrando ciertas ventajas frente a otros nanodispensadores como nanopartículas, nanotubos de carbono o vesículas de distinto tipo. Este tema lo trataremos con mayor profundidad en otra ocasión, ya que constituye una de las líneas de trabajo más prometedoras de la nanomedicina.

Fuente: El Mundo. Aportado por Eduardo J. Carletti

Más información: