Un equipo de físicos europeos logró capturar por primera vez átomos de antimateria
Los investigadores, de la organización europea de investigación nuclear (CERN), lograron atrapar 38 átomos de hidrógeno de antimateria en una fracción de segundo, un tiempo que permite comenzar a estudiar su estructura.
Esto supone un hito histórico ya que, según explica Jason Palmer, especialista en Ciencia de la BBC, pese a que antes se había logrado producir antihidrógeno, en las ocasiones anteriores se destruyó inmediatamente al entrar en contacto con la materia.
El equipo que llevó a cabo este estudio, publicado en la revista Nature, considera que la posibilidad de estudiar estos átomos de antimateria permitirá hacer pruebas sobre principios fundamentales inéditos hasta ahora.
Además, este logro podría conducir a una mayor comprensión de los orígenes del universo.
Misterios de la física
El actual «modelo estándar» de la física sostiene que cada partícula, como los protones, electrones o neutrones, tiene en su imagen replicada su antipartícula.
Sin embargo, uno de los grandes misterios es por qué nuestro mundo está formado mayormente por materia en lugar de antimateria, ya que las leyes de la física no hacen ninguna distinción entre los dos y debería haber sido creadala misma cantidad de ambas en el nacimiento del Universo.
La producción de partículas de antimateria como positrones y los antiprotones se ha convertido en algo común en los laboratorios, pero juntar las partículas para formar átomos de antimateria es mucho más difícil.
Eso se logró por primera vez en 2002. Pero el manejo del antihidrógeno —átomos formados por un antiprotón y un positrón— es más difícil todavía, porque para no aniquilarse no debe entrar en contacto con ninguna otra cosa.
Por ello, la captura de los átomos de antihidrógeno requiere de un tipo de campo particular. «Los átomos son neutros —no tienen carga neta— y son poco magnéticos», explicó Jeff Hangst, de la Universidad de Dinamarca, y uno de los miembros del proyecto.
«Se puede pensar en ellos como pequeñas agujas de brújula, por lo pueden ser desviados con campos magnéticos. Construimos una fuerte botella magnética alrededor de la cual producimos el antihidrógeno y si los átomos no se mueven demasiado rápido, los atrapamos», le dijo a la BBC.
Siguiente paso
Los campos magnéticos que integran la botella magnética no son particularmente fuertes, por lo que los investigadores buscaron que los átomos de antihidrógeno se movieran con lentitud.
El equipo demostró que entre sus 10 millones de antiprotones y 700 millones de positrones, se formaron 38 átomos estables de antihidrógeno, que duraron alrededor de dos décimas de segundo cada uno. El siguiente paso será producir más átomos y que duren más tiempo para que se los pueda estudiar en profundidad.
«Lo que nos gustaría hacer es ver si hay alguna diferencia que no entendemos todavía entre la materia y la antimateria» para tratar de descifrar, entre otras cosas, lo que sucedió en la creación del universo, afirmó el profesor Hangst.
Fuente: BBC Mundo. Aportado por Eduardo J. Carletti
Más información:
- La materia supera a la antimateria en un experimento que imita a la creación
- La antimateria rebota en la materia
- Nuevo descubrimiento físico explora por qué hay más materia que antimateria en el Universo
- Nuevo giro en el misterio de la antimateria
- Los cinco mayores misterios de la antimateria
- Nueva evidencia de que la materia y la antimateria se pueden comportar de forma diferente
- Físicos crean suficiente antimateria para probar teoría
- En busca de galaxias de antimateria, strangelets, miniagujeros negros y otras rarezas del universo
- Crean 100.000 millones de partículas de antimateria en un laboratorio
- Los láseres pueden volver reales las partículas virtuales