Archivo de la categoría: Astronomía

¿El agujero negro supermasivo de la Vía Láctea es peligroso para los planetas de la galaxia?

Nuestra galaxia tiene Sagitario A* en su centro, un agujero negro que tiene 4,2 millones de veces la masa de nuestro Sol. Afortunadamente, no absorbe mucha materia y por eso no es una fuente de radiación y partículas de alta energía. Pero la mayoría de las galaxias pasan por etapas activas. La radiación emitida puede extenderse de 3.000 a 5.000 años luz a su alrededor. Lo que queremos saber es, ¿Cuando eso sucede, qué pasa con los planetas que albergan vida en una galaxia.

Los astrónomos han sabido desde la década de 1990 que los planetas existen alrededor de los púlsares. Es una hipótesis razonable que los planetas también puedan existir alrededor de los agujeros negros, que tienen un impacto más débil en su entorno local que las estrellas de neutrones en rotación. En 2019, el astrofísico de Harvard Avi Loeb y Jeremy Schnittman de la NASA propusieron que podrían existir planetas habitados alrededor de los agujeros negros albergados en el centro de la mayoría de las galaxias. Dichos planetas son similares al planeta ficticio del mundo acuático Miller, el planeta más cercano en el sistema estelar que orbita el agujero negro supermasivo, llamado Gargantúa en la película Interestelar.


Interpretación de un artista de Sagitario A*,
el agujero negro supermasivo en el centro de nuestra galaxia

Partículas de alta energía y vientos al 10 % de la velocidad de la luz

Un nuevo artículo del astrobiólogo Manasvi Lingam y el astrofísico Eric Perlman del Instituto de Tecnología de Florida, junto con investigadores de la Universidad de Roma, la Universidad de Maryland y el Centro de Vuelo Espacial Goddard, examina la radiación y los vientos que emanan de la actividad de los agujeros negros y cómo pueden ejercer efectos en los planetas cercanos. El estudio se centra en dos mecanismos clave: cómo los vientos de los agujeros negros pueden calentar las atmósferas e impulsar el escape atmosférico, y cómo pueden estimular la formación de óxidos de nitrógeno y, por lo tanto, provocar el agotamiento del ozono.

“La mayoría de las galaxias tienen agujeros negros en sus núcleos”, escribió Perlman. “Nuestra galaxia tiene Sagitario A*, que tiene 4,2 millones de veces la masa de nuestro Sol. Afortunadamente, absorbe muy poca materia y no es una fuente de radiación y partículas de alta energía”, explicó. “Pero la mayoría de las galaxias pasan por etapas activas. Lo que queríamos saber era, ¿qué pasó con los planetas que albergan vida en una galaxia cuando eso sucede?”

Para estudiar cómo los agujeros negros pueden afectar la atmósfera de un planeta, el equipo desarrolló modelos matemáticos para estimar la distancia máxima hasta la cual estos efectos se vuelven significativos para los planetas similares a la Tierra en la Vía Láctea. Esto demostró que este impacto puede extenderse aproximadamente más de 3.000 años luz. En el caso de los cuásares que albergan agujeros negros supermasivos más grandes, la investigación encontró que tales efectos podrían influir en la galaxia anfitriona del agujero negro en su conjunto.

«Resulta que cuando tienes un agujero negro supermasivo que está activo, no solo produce radiación, sino que también produce muchas partículas de alta energía que son alimentadas por el agujero negro», dijo el astrobiólogo del Instituto de Tecnología de Florida, Mansavi Lingam. “Es fácil visualizarlo como un viento rápido, como un huracán extremadamente amplificado. Tienes este viento de partículas de alta energía que emana de la vecindad del agujero negro al 10% de la velocidad de la luz, más de mil veces más rápido que cualquier nave espacial actual”.

No amigable con la biología – Agujero Negro “indigesto”

La radiación que emiten los agujeros negros es esencialmente partículas de luz conocidas como fotones. Pero si los agujeros negros son conocidos principalmente porque nada escapa de ellos, ¿por qué se emite esta luz al igual que las partículas de alta energía en el viento? Lo que sucede es que hay mucho gas que rodea al agujero negro durante su fase activa. El agujero negro comienza a consumir parte de ese gas. Pero no se lo come de una manera totalmente eficiente: a medida que el agujero negro consume más y más gas, el gas cae hacia el agujero negro.

Mientras cae hacia el interior del agujero negro, se calienta. Al igual que cuando te frotas las manos y la fricción genera calor, la fricción experimentada por el gas que se mueve en espiral hacia el interior del agujero negro hace que se caliente y finalmente libere energía en forma de fotones.

“Piense en ello como una forma de indigestión interestelar”, dijo Lingam.

Zona de impacto: 3.000, quizás 5.000 años luz

“Esta radiación puede bombardear las atmósferas”, dijo. “Puede llevar a que esas atmósferas se erosionen. Puede suministrar mucha radiación UV, puede ser perjudicial para la biología, etc. Algunas de las mismas ramificaciones se aplican también a los vientos de alta velocidad del agujero negro. Estos fueron algunos de los muchos efectos que analizamos”.

Todavía queda mucho por investigar sobre el viento en los agujeros negros. Lingam señaló que el modelo considera la expansión uniforme del viento en todo el espacio, mientras que el trabajo futuro necesitaría examinar la emisión de radiación y vientos en forma de chorros, que espera investigar con Perlman y sus colegas italianos.

La Tierra está a 26.000 años luz del centro de la Vía Láctea

Para aquellos que están preocupados por la radiación y los vientos del agujero negro supermasivo de la Vía Láctea que afecten a la Tierra, no hay razón para preocuparse.

“Lo bueno que aprendimos durante el curso de este trabajo es que muchos de estos efectos se extienden hasta 3.000 años luz, quizás 5.000 años luz, en algunos casos extremos”, dijo Lingam. “Pero afortunadamente la Tierra se encuentra a 26.000 años luz del centro de la Vía Láctea, por lo que está cómodamente fuera de esa zona de influencia, si podemos llamarla así, de la actividad del agujero negro. Por lo tanto, podríamos considerarnos afortunados de habitar esta región relativamente pacífica de nuestra galaxia”.

La última palabra

«Nuestra investigación indica que los planetas muy próximos a los agujeros negros supermasivos activos recibirían dosis excepcionalmente altas de radiación ultravioleta y partículas de alta energía», dijo Manasvi Lingam, «ambos plantearían muchos obstáculos para la habitabilidad, como la erosión atmosférica», agotamiento de la capa de ozono, daños biológicos y mucho más”.

«Quizás el escenario más probable para la ‘vida’ cerca de una estrella de neutrones o un agujero negro implica la colonización… por misiones robóticas de una civilización alrededor de otra estrella cercana», dijo el astrónomo James Cordes de la Universidad de Cornell en 2021. El enfoque de investigación de Cordes incluye estrellas de neutrones, púlsares y la búsqueda de inteligencia extraterrestre. “Tal misión”, señala, “sería muy costosa y podría no estar justificada dado el poder de la teledetección. Sin embargo, una civilización antigua pero avanzada podría permitirse ese lujo”.
________________________________________
Maxwell Moe , astrofísico, NASA Einstein Fellow, Universidad de Arizona a través de Manasvi Lingam , Eric Perlman , Florida Institute of Technology y Monthly Notices of the Royal Astronomical Society y Daily Galaxy.

Noticias relacionadas:

En la luna Europa, el caótico terreno podría transportar oxígeno a un océano interior

El agua salada dentro de la capa helada de la luna Europa de Júpiter podría estar transportando oxígeno a un océano de agua líquida cubierto de hielo, donde potencialmente podría ayudar a mantener la vida extraterrestre, según un equipo de investigadores dirigido por la Universidad de Texas en Austin.


Interpretación de un artista del agua líquida en la superficie de Europa que se acumula
debajo del caótico terreno. CRÉDITO NASA/JPL-Caltech

Esta teoría ya fue propuesta por otros, pero los investigadores la pusieron a prueba al construir la primera simulación computarizada del proceso basada en la física del mundo, con oxígeno moviéndose en el agua salada bajo los «terrenos de caos» de la luna, paisajes formados por grietas, crestas y bloques de hielo que cubren una cuarta parte del mundo helado.

Los resultados muestran que no solo es posible el transporte, sino que la cantidad de oxígeno llevada al océano de Europa podría estar a la par con la cantidad de oxígeno en los océanos de la Tierra en la actualidad.

«Nuestra investigación pone este proceso en el ámbito de lo posible», dijo el investigador principal Marc Hesse, profesor del Departamento de Ciencias Geológicas de la Escuela de Geociencias UT Jackson. «Aporta una solución a lo que se considera uno de los problemas pendientes de habitabilidad del océano subterráneo de Europa».

El estudio fue publicado recientemente en la revista Geophysical Research Letters.


El modelo basado en la física creado por los investigadores muestra que la sal y el oxígeno en la superficie de Europa son transportados por una «onda de porosidad» (forma esférica) a través de la capa de hielo de la luna hasta el océano de agua líquida que se encuentra debajo. El gráfico muestra el tiempo (en miles de años) y la profundidad de la capa de hielo (en kilómetros). El rojo indica niveles más altos de oxígeno. El azul representa niveles más bajos de oxígeno. CRÉDITO Hesse et al

Europa es un lugar privilegiado para buscar vida extraterrestre porque los científicos han detectado signos de oxígeno y agua, junto con sustancias químicas que podrían servir como nutrientes. Sin embargo, la capa de hielo de la luna, que se estima que tiene unos 15 kilómetros de espesor, resulta ser una barrera entre el agua y el oxígeno, que es generado por la luz solar y las partículas cargadas de Júpiter que llegan a la superficie helada.

Si la vida tal como la conocemos existe en el océano, debe haber una forma de que el oxígeno llegue a ella. Según Hesse, el escenario más plausible —basado en la evidencia disponible— es que el oxígeno sea transportado por agua salada o salmuera.

Los científicos creen que los terrenos caóticos se forman por encima de las regiones donde la capa de hielo de Europa se derrite parcialmente para formar salmuera, que puede mezclarse con el oxígeno de la superficie. El modelo de computadora creado por los investigadores mostró lo que le sucede a la salmuera después de la formación del terreno del caos.

El modelo mostró que la salmuera se drenaba de una manera distinta, tomando la forma de una «onda de porosidad» que hace que los poros en el hielo se ensanchen por un tiempo, lo que permite que pase la salmuera antes de volver a sellarse. Hesse compara el proceso con la clásica presión en los dibujos animados de un bulto de agua que corre por una manguera de jardín.

Este modo de transporte parece ser una forma efectiva de llevar oxígeno a través del hielo, con el 86% del oxígeno absorbido en la superficie y montado en la ola hasta el océano. Pero los datos disponibles permiten una amplia gama de niveles de oxígeno entregados al océano de Europa a lo largo de su historia, con estimaciones que varían por un factor de 10.000.

Según el coautor Steven Vance, científico investigador del Laboratorio de Propulsión a Chorro (JPL) de la NASA y supervisor de su Grupo de Interiores Planetarios y Geofísica, la estimación más alta haría que los niveles de oxígeno en el océano de Europa fueran similares a los de los océanos de la Tierra, lo que aumenta esperanza sobre el potencial de ese oxígeno para sustentar la vida en el océano oculto.

«Es tentador pensar en algún tipo de organismo aeróbico que vive justo debajo del hielo», dijo.

Vance dijo que la próxima misión Europa Clipper 2024 de la NASA puede ayudar a mejorar las estimaciones de oxígeno y otros ingredientes para la vida en la luna helada.

Kevin Hand, un científico centrado en la investigación de Europa en el JPL de la NASA que no formó parte del estudio, dijo que el estudio presenta una explicación convincente para el transporte de oxígeno en Europa.




«Sabemos que Europa tiene compuestos útiles como el oxígeno en su superficie, pero ¿llegan al océano de abajo, donde la vida puede usarlos?» él dijo. «En el trabajo de Hesse y sus colaboradores, la respuesta parece ser sí».

La investigación fue financiada por la NASA, la Fundación Nacional de Ciencias y el Fondo de Investigación del Petróleo de la Sociedad Química Estadounidense.

Además de la Escuela Jackson, Hesse también es investigadora en el Centro de Habitabilidad de Sistemas Planetarios de UT y en el Instituto Oden de Ingeniería y Ciencias Computacionales.

NOTA: «Chaos» (caos, caótico) es un término regulado por la Unión Astronómica Internacional usado en astrogeología para denotar áreas planetarias perfectamente delimitadas cuya superficie es sumamente escarpada, quebradiza y agrietada. Las zonas Chaos son muy frecuentes en la superficie marciana y en la luna Europa de Júpiter.
________________________________________
Fuente: Universidad de Texas en Austin, Downward Oxidant Transport Through Europa’s Ice Shell by Density-Driven Brine Percolation, Geophysical Research Letters – Astrobiology

Noticias relacionadas:

El Hubble detecta la estrella más lejana que se haya observado: Earendel

El telescopio espacial Hubble de la NASA ha establecido un nuevo punto de referencia extraordinario: detectar la luz de una estrella que existió en los primeros mil millones de años después del nacimiento del universo en el Big Bang, lo que la convierte en la estrella individual más lejana jamás vista hasta la fecha. El anuncio fue anticipado ayer y liberado por la NASA hoy mismo.

El hallazgo es un gran salto más atrás en el tiempo que con el récord anterior de una sola estrella; esta fue detectada por Hubble en 2018. Esa estrella existía cuando el universo tenía unos 4.000 millones de años, o el 30 por ciento de su edad actual, en un momento al que los astrónomos se refieren como un “desplazamiento al rojo de 1.5”. Los científicos usan el término “desplazamiento hacia el rojo” porque a medida que el universo se expande, la luz de los objetos distantes se estira o “se desplaza” a longitudes de onda más largas y rojas a medida que viaja hacia nosotros.


Esta vista detallada destaca la posición de la estrella Earendel a lo largo de una onda en el espacio-tiempo (línea punteada) que la amplía y hace posible que la estrella se detecte a una distancia tan grande: casi 13.000 millones de años luz. También se indica un cúmulo de estrellas que se refleja a ambos lados de la línea de magnificación. La distorsión y la ampliación son creadas por la masa de un enorme cúmulo de galaxias ubicado entre Hubble y Earendel. La masa del cúmulo de galaxias es tan grande que deforma el tejido del espacio, y mirar a través de ese espacio es como mirar a través de una lupa: a lo largo del borde del cristal o lente, la apariencia de las cosas del otro lado se distorsiona al mismo tiempo que se magnifica.
Créditos: Ciencia: NASA, ESA, Brian Welch (JHU), Dan Coe (STScI);
procesamiento de imágenes: NASA, ESA, Alyssa Pagan (STScI)

La estrella recién detectada está tan lejos que su luz ha tardado 12.900 millones de años en llegar a la Tierra, y se nos aparece como cuando el universo tenía solo el 7 por ciento de su edad actual, con un desplazamiento al rojo de 6.2. Los objetos más pequeños vistos anteriormente a una distancia tan grande son cúmulos de estrellas dentro de galaxias primitivas.

“Al principio casi no lo creíamos: estaba mucho más lejos que la anterior estrella de mayor desplazamiento al rojo más distante”, dijo el astrónomo Brian Welch de la Universidad Johns Hopkins en Baltimore, autor principal del artículo que describe el descubrimiento, publicado el 30 de marzo en la revista Nature. El descubrimiento se hizo a partir de los datos recopilados durante el programa Estudio de la reionización con lentes gravitacionales en cúmulos (RELICS, por sus siglas en inglés) del Hubble, dirigido por el coautor Dan Coe en el Instituto de Ciencia del Telescopio Espacial, también en Baltimore.




“Normalmente, a estas distancias, las galaxias enteras se ven manchas pequeñas, donde se mezcla la luz de millones de estrellas”, dijo Welch. “La galaxia que alberga esta estrella ha sido ampliada y distorsionada por lentes gravitacionales en una larga media luna que llamamos el Arco del Amanecer”.

Después de estudiar la galaxia en detalle, Welch determinó que uno de los elementos es una estrella extremadamente magnificada que llamó Earendel, que significa “estrella de la mañana» en inglés antiguo. El descubrimiento promete abrir una era inexplorada de formación estelar muy temprana.

“Earendel existió hace tanto tiempo que es posible que no haya tenido todas las mismas materias primas que las estrellas que nos rodean hoy en día”, explicó Welch. “Estudiar Earendel será una ventana a una era del universo con la que no estamos familiarizados, pero que condujo a todo lo que conocemos. Es como si hubiéramos estado leyendo un libro muy interesante, pero comenzamos con el segundo capítulo, y ahora tendremos la oportunidad de ver cómo comenzó todo”, dijo Welch.

Cuando las estrellas se alinean

El equipo de investigación estima que Earendel tiene al menos 50 veces la masa de nuestro Sol y es millones de veces más brillante, rivalizando con las estrellas más masivas que se conocen. Pero incluso una estrella tan brillante y de gran masa sería imposible de ver a una distancia tan grande sin la ayuda del aumento natural que produce un enorme cúmulo de galaxias, WHL0137-08, que se encuentra entre nosotros y Earendel. La masa del cúmulo de galaxias deforma el tejido del espacio, creando una poderosa lupa natural que distorsiona y amplifica enormemente la luz de los objetos distantes que están detrás de él.

Gracias a la rara alineación con el cúmulo de galaxias que sirven de lente de aumento, la estrella Earendel aparece directamente sobre una ondulación en el tejido del espacio, o muy cerca de ella. Esta ondulación, que se define en óptica como una “cáustica”, proporciona el máximo aumento y brillo. El efecto es análogo al de la superficie ondulada de una piscina que crea patrones de luz brillante en el fondo de la piscina en un día soleado. Las ondulaciones en la superficie actúan como lentes y enfocan la luz solar al brillo máximo en el fondo de la piscina.

Esta cáustica hace que la estrella Earendel sobresalga del resplandor general de su galaxia de origen. Su brillo se magnifica mil veces o más. A este punto, los astrónomos no pueden determinarse si Earendel es una estrella binaria, aunque la mayoría de las estrellas masivas tienen por lo menos una estrella compañera más pequeña.

Confirmación con el telescopio Webb

Los astrónomos esperan que Earendel permanezca muy magnificada en los años venideros. Será observada por el telescopio espacial James Webb de la NASA. La alta sensibilidad del Webb a la luz infrarroja es necesaria para aprender más sobre Earendel, porque su luz se estira (se desplaza hacia el rojo) a longitudes de onda infrarrojas más largas debido a la expansión del universo.

“Con Webb esperamos confirmar que Earendel es de hecho una estrella, así como medir su brillo y temperatura”, dijo Coe. Estos detalles reducirán la investigación sobre su tipo y su etapa en el ciclo de vida estelar. “También esperamos encontrar que el Arco del Amanecer carece de los elementos pesados que se forman en las generaciones posteriores de estrellas. Esto sugeriría que Earendel es una estrella rara, masiva y pobre en metales”, dijo Coe.

La composición de Earendel será de gran interés para los astrónomos, porque se formó antes de que el universo se llenara con los elementos pesados producidos por las sucesivas generaciones de estrellas masivas. Si los estudios de seguimiento encuentran que Earendel está compuesta solamente de hidrógeno y helio primordiales, sería la primera evidencia de las legendarias estrellas de Población III, que se supone que son las primeras estrellas nacidas después del Big Bang. Si bien la probabilidad es pequeña, Welch admite que es tentadora de todos modos.

“Con Webb, podemos ver estrellas incluso más lejanas que Earendel, lo que sería increíblemente emocionante”, dijo Welch. “Iremos tan atrás como podamos. Me encantaría ver a Webb romper el récord de distancia de Earendel”.

El telescopio espacial Hubble es un proyecto de cooperación internacional entre la NASA y la ESA (Agencia Espacial Europea). El Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, administra el telescopio. El Instituto de Ciencia del Telescopio Espacial (STScI, por sus siglas en inglés) en Baltimore, Maryland, lleva a cabo operaciones científicas del Hubble. STScI es operado para la NASA por la Asociación de Universidades para la Investigación en Astronomía en Washington, D.C.

NASA’s Goddard Space Flight Center
Last Updated: Mar 30, 2022
Editor: Andrea Gianopoulos

Más publicaciones sobre el tema en axxon.com.ar/noticias/category/ciencia/astronomia/