Archivo de la etiqueta: Planetas

SPHERE, cazaplanetas del VLT, capta la forma en que los planetas dan forma a los discos donde se forman

Nuevas y precisas observaciones han revelado llamativas características en discos de formación de planetas alrededor de estrellas jóvenes. El instrumento SPHERE, instalado en el telescopio VLT (Very Large Telescope) de ESO, ha permitido observar la compleja dinámica de varios sistemas solares jóvenes — incluyendo uno en tiempo real. Los resultados de tres equipos de astrónomos, recientemente publicados, muestran la impresionante capacidad de SPHERE para captar la forma en que los planetas esculpen los discos a partir de los cuales se forman, sacando a la luz la complejidad del entorno en el cual surgen estos nuevos mundos

Tres equipos de astrónomos han hecho uso de SPHERE, un avanzado instrumento para la detección de exoplanetas instalado en el VLT (Very Large Telescope), en el Observatorio Paranal de ESO, con el fin de arrojar luz sobre la enigmática evolución de incipientes sistemas planetarios. El auge en el número de exoplanetas conocidos en los últimos años ha convertido su estudio en uno de los campos más dinámicos de la astronomía moderna.

Hoy se sabe que los planetas se forman a partir de grandes discos de gas y polvo que rodean a las estrellas recién nacidas, conocidos como discos protoplanetarios. Pueden tener tamaños de cientos de millones de kilómetros. Con el tiempo, las partículas de estos discos protoplanetarios chocan, se combinan y, finalmente, acaban formando cuerpos de tamaño planetario. Sin embargo, los detalles más finos de la evolución de estos discos de formación planetaria siguen siendo un misterio.

SPHERE es un instrumento recientemente añadido al conjunto de instrumentos del VLT. Su combinación de nuevas tecnologías proporciona un potente método para obtener imágenes directas de detalles de los discos protoplanetarios [1]. La interacción entre los discos protoplanetarios y los planetas en formación puede dar diversas formas a los discos: grandes anillos, brazos espirales o huecos con sombras. Son de especial interés porque aún es necesario encontrar una relación inequívoca entre estas estructuras y los planetas que les dan forma, un misterio que los astrónomos están dispuestos a resolver. Afortunadamente, las capacidades especializadas de SPHERE permiten que los equipos de investigación observen directamente las llamativas características de los discos protoplanetarios.

Por ejemplo, RXJ1615 es una joven estrella que se encuentra en la constelación de Escorpio, a 600 años luz de la Tierra. Un equipo dirigido por Jos de Boer, del Observatorio de Leiden (Países Bajos), encontró un complejo sistema de anillos concéntricos rodeando a la joven estrella, una forma que se asemeja a una versión titánica de los anillos que rodean a Saturno. Anteriormente se habían obtenido muy pocas imágenes de este tipo anillos esculpidos en un disco protoplanetario, con una forma tan intrincada, y aún más emocionante, todo el sistema parece tener solo 1,8 millones de años. El disco muestra indicios de haber adquirido esta forma debido a planetas en pleno proceso de formación.







La edad del nuevo disco protoplanetario detectado hace de RXJ1615 un sistema excepcional, ya que la mayoría de los ejemplos de discos protoplanetarios detectados hasta ahora son relativamente viejos o evolucionados. El inesperado resultado de De Boer se amplió rápidamente gracias a los resultados de un equipo dirigido por Christian Ginski, también del Observatorio de Leiden. Observaron la joven estrella HD97048, situado en la constelación del Camaleón, a unos 500 años luz de la Tierra. A través de un minucioso análisis, encontraron que el joven disco que hay alrededor de esta estrella se ha formado también en anillos concéntricos. La simetría de estos dos sistemas es un resultado sorprendente, dado que la mayoría de los sistemas protoplanetarios contiene una multitud de brazos espirales asimétricos, vacíos y vórtices. Estos descubrimientos aumentan significativamente el número de sistemas conocidos con múltiples anillos altamente simétricos.

Un equipo de astrónomos, dirigido por Tomas Stolker, del Instituto de Astronomía Anton Pannekoek (Países Bajos), captó un ejemplo particularmente espectacular del disco asimétrico más común. Este disco rodea a la estrella HD135344B, situada a unos 450 años luz de distancia. Aunque esta estrella ha sido bien estudiada con anterioridad, SPHERE ha permitido ver el disco protoplanetario con un nivel de detalle nunca alcanzado antes. Se cree que la gran cavidad central y las dos prominentes estructuras en forma de brazo espiral fueron creadas por uno o varios protoplanetas masivos, destinados a convertirse en mundos similares a Júpiter.

Además se observaron cuatro rayas oscuras, al parecer las sombras lanzadas por el movimiento del material dentro del disco de HD135344B. Una de las cosas a destacar es que una de las vetas cambió notablemente en los meses que pasaron entre los periodos de observación: un raro ejemplo de evolución planetaria en tiempo real, indicando cambios que ocurren en las regiones internas del disco y que no pueden detectarse directamente con SPHERE. Además de dar lugar a bellas imágenes, estas sombras parpadeantes proporcionan una manera única de sondear la dinámica de las regiones del interior del disco.

Al igual que los anillos concéntricos descubiertos por De Boer y Ginski, estas observaciones del equipo de Stolker demuestran que aún es posible hacer descubrimientos sorprendentes en el entorno complejo y cambiante de los discos alrededor de estrellas jóvenes. Elaborando un impresionante cuerpo de conocimiento sobre estos discos protoplanetarios, estos equipos están acercándose a las respuestas que nos ayudarán a entender cómo los planetas dan forma a los discos de los que nacen y, por tanto, entender cómo es la propia formación planetaria.

Notas

[1] SPHERE vio su primera luz en junio de 2014. El instrumento utiliza óptica adaptativa avanzada para eliminar la distorsión atmosférica, un coronógrafo para bloquear la mayoría de la luz de la estrella central y una combinación de imagen diferencial y polarimetría para aislar la luz de las partes del disco.

Información adicional

La investigación de De Boer, Ginski y Stolker y sus colegas del consorcio SPHERE ha sido aceptada para su publicación en la revista Astronomy and Astrophysics. Sus artículos científicos se titulan: “Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE”, “Shadows cast on the transition disk of HD 135344B: Multi-wavelength VLT/SPHERE polarimetric differential imaging”, y “Multiple rings in the transition disk and companion candidates around RX J1615.3-3255: High contrast imaging with VLT/SPHERE”. Los tres artículos se han desarrollado en el marco del programa SPHERE GTO, liderado por Carsten Dominik, de la Universidad de Ámsterdam.

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de dieciséis países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Además, cerca de Paranal, en Cerro Armazones, ESO está construyendo el E-ELT (European Extremely Large Telescope), el telescopio óptico y de infrarrojo cercano de 39 metros que llegará a ser “el ojo más grande del mundo para mirar el cielo”.

Fuente: ESO. Aportado por Eduardo J. Carletti

Más información:

Objetos misteriosos con órbitas extrañas descubiertos en el Sistema Solar exterior

Un nuevo descubrimiento indica que nuestro Sistema Solar tiene más de un plano orbital, y estos otros planos podrían estar llenos de misteriosos planetoides.

Estos cuerpos permanecen ocultos en lugares hasta ahora inexplorados. Se ha descubierto más allá de Neptuno un objeto extraño, con un tamaño de aproximadamente 200 kilómetros, llamado Niku (que significa «rebelde» en chino), que no circunda el Sol en el mismo plano orbital que los planetas del sistema, informó Mateo Holman del Harvard Smithsonian Center for Astrophysics. En cambio gira alrededor del Sol en sentido inverso con una inclinación de 110 grados, en comparación con otros objetos planetarios.

«Esto sugiere que hay más en juego en el Sistema Solar exterior de lo que estamos plenamente conscientes», dijo Holman, parte del equipo que descubrió Niku. Es posible que Niku y otros objetos como él tengan otro origen diferente a los que científicos tiene en cuenta en la actualidad.


De hecho, es el segundo objeto descubierto que tiene una órbita tan retrógrada, después del descubrimiento del menos elegantemente llamado 2008 KV42 (llamado también Drac), por lo que es probable que se descubran por ahí mundos más extraños.







El misterioso 2011 KT19

2011 KT19 (apodado Niku) es un objeto transneptuniano (trans-Neptunian object, TNO) con un inusual plano orbital de 110 grados de inclinación respecto al plano orbital solar, y con un giro retrógrado en torno al Sol.

Ha sido descubierto recientemente, en agosto de 2016, por un equipo de astrónomos que utilizaban el telescopio Pan-STARRS. Enseguida se lo asoció con un supuesto Centauro de órbita también retrógrada que se había perdido de vista, al que se había designado 2011 KT19. Notablemente, es parte de un grupo de objetos que orbitan al Sol en un órbita muy inclinada. No se conocen las razones por las que se encuentra en esta inusual órbita.


Dibujo de cómo podría ser el nuevo objeto, bautizado Niku

Las características orbitales de 2011 KT19 se han comparado con las de 2008 KV42 (Drac). Las órbitas de 2011 KT19, 2008 KV42, y cuatro objetos parecen ocupar un plano en común, tres de ellos en órbita no retrógrada y tres girando en dirección retrógrada. La probabilidad de que ocurra esta alineación es de 0,016%. Esas órbitas deberían dejar el plano común en unos pocos millones de años ya que la dirección de la precesión de las órbitas retrógradas y no retrógradas va en dirección opuesta. Las simulaciones que incluyen el hipotético Planeta Nueve no mantienen un plano orbital común y ese plano no coincide con el plano de la máxima inclinación predicha para grandes objetos del gran eje semi-mayor de ese modelo.

Cómo han alcanzado estos objetos sus extrañas órbitas es un misterio. La razón por la que la mayor parte del resto de los objetos en nuestro Sistema Solar órbitan en el mismo plano se debe a que se formaron a partir de la misma nube de gas original, que giraba en una dirección en particular, creando nuestro Sol.

La imagen superior muestra el Cinturón de Kuiper y la Nube de Oort en el Sistema Solar exterior, un smog cósmico, una sopa de Oort del tamaño de algunas galaxias, que contiene el gas, el polvo, los planetesimales, los planetas y las estrellas enanas negras de masa sub-solar, en la que hay volúmenes donde de vez en cuando se ha producido una agregación de masa lo suficientemente grande como para formar una estrella funcional.

Fuente: The Daily Galaxy. Aportado por Eduardo J. Carletti

Más información:

El infernal Venus pudo haber sido habitable durante miles de millones de años

Un equipo de astrónomos piensa que el tórrido y tóxico mundo alguna vez fue un hogar acogedor para una potencial existencia de vida.

Venus es, sin lugar a dudas, un hermano tóxico de la Tierra. A pesar de que ambos mundos son similares en tamaño y densidad, nuestro vecino planetario tiene temperaturas tan altas que pueden derretir el plomo, los vientos que lo azotan son unas 60 veces más veloces que el giro del planeta, y tiene una aplastante atmófera con más de 90 veces la presión encontrada en la de la Tierra. Pero hay algunas pistas alentadoras de que miles de millones de años atrás Venus podría haber sido más afín a su gemelo, la Tierra.

Además de sus tamaños comparables, los mundos también se formaron juntos, lo que sugiere que están formados de los mismos materiales. La gran diferencia es su proximidad al Sol. Debido a que Venus está a aproximadamente 41 millones de kilómetros más cerca, recibe el doble de luz solar que la Tierra. Pero hace unos pocos millones de años, un sol ligeramente más débil podría haber permitido que Venus fuera relativamente fría, un lugar donde el agua líquida podría haberse agrupado en vastos océanos, amigables para la vida.


En esta vista en perspectiva tridimensional de la superficie de Venus se observa el Monte Maat. Crédito: NASA / JPL

Un nuevo estudio aceptado recientemente en Geophysical Research Letters sugiere que Venus no sólo era habitable en el pasado distante, sino que podría haber permanecido habitable durante miles de millones de años. Michael Way del Instituto Goddard de Estudios Espaciales y sus colegas aplicaron el primer modelo climático en tres dimensiones —las mismas simulaciones por computadora que se utilizan para predecir el cambio climático causado por el hombre en la Tierra— a la época primitiva de Venus. Como la investigación anterior en Venus se limitaba a modelos climáticos unidimensionales (que tienen en cuenta la radiación entrante y saliente, pero no visualizan las complejidades dentro de una atmósfera, como las nubes), los resultados son un gran paso adelante en comparación con estos estudios anteriores, según los científicos. «Hay una diferencia real entre un cálculo aproximado y la conexión de un modelo más sofisticado», dice Jason Barnes, astrónomo de la Universidad de Idaho, que no participó en el estudio.







El equipo simuló primero cómo podría haberse visto el clima venusiano hace 2.900 millones de años. Una fecha tan antigua requiere que los investigadores hagan algunas conjeturas acerca del planeta primitivo, tal como asumir que tenía un océano poco profundo de sólo el 10 por ciento del volumen que tiene la Tierra hoy en día. Pero los resultados fueron claros: hace 2.900 millones de años, el segundo mundo rocoso desde el Sol podría haber tenido una suave temperatura, similar a la Tierra, que se mantenía alrededor de los 11 grados centígrados. Posteriormente, el equipo hizo una corrida del modelo para un Venus más tardío, hace unos 715 millones de años, y encontró que incluso bajo el calor del Sol el planeta se habría calentado sólo 4 grados centígrados con respecto al clima anterior. Un ligero aumento de la temperatura de ese nivel habría permitido que un océano líquido persistiera en el planeta durante miles de millones de años.

¿Qué permitió que Venus permaneciera húmedo durante tanto tiempo? De acuerdo a los modelos, las nubes jugaron un papel clave. Lo más probable es que se juntaran en el lado diurno del planeta, actuando como un escudo brillante que reflejaba la luz solar entrante, y nunca se formaban en el lado nocturno, dejando que el calor se irradiara hacia el espacio. «Para mí la verdadera noticia es que Venus podría haber sido habitable durante un período significativo de tiempo, y el tiempo es uno de los ingredientes clave para la capacidad de originar vida en un planeta», dice Lori Glaze, astrónoma del Centro Goddard de Vuelo Espacial de la NASA, quien no participó en el estudio. Esta propuesta le agrega un nuevo elemento a la cuestión de la habitabilidad: el tiempo. «La habitabilidad no es algo estático», dice David Grinspoon, un astrónomo del Instituto de Ciencia Planetaria y co-autor del trabajo. «No es sólo una cuestión de un punto del espacio, es un punto en el espacio y en el tiempo, y durante cuánto tiempo, potencialmente, podría retener los océanos un planeta, y si es suficiente extenso como para ser considerado un buen candidato para haber tenido un origen y una evolución de la vida.»


Cómo veía al planeta Venus la CF hace 50 años. Quizás no estaban tan errados.

Esas condiciones de ambiente fresco, sin embargo, dependen de si Venus tenía el mismo aspecto en su juventud que hoy en día —aunque los investigadores añadieron un océano, mantuvieron la topografía actual de Venus intacta— y si siempre ha girado tan lentamente como ahora, que le lleva 243 días terrestres para completar su rotación. Debido a que las respuestas a ambas preguntas son bastante inciertas, el equipo de investigación también modeló cómo habría sido el clima de Venus hace 2.900 millones de años si tenía una topografía similar a la Tierra primitica, o si giraba a un ritmo ligeramente más rápido. Las diferencias se hicieron enormes. Con cadenas montañosas y cuencas oceánicas similares a la de la Tierra, la temperatura era de 12 grados más caliente que con la topografía actual de Venus. Y si la velocidad de rotación era de 16 días terrestres, la temperatura se disparaba a 45 grados más alta que con el nivel de velocidad de rotación actual. El patrón de nubes que mantenía el clima fresco sólo se formaba con el planeta rotando lentamente.

Este resultado tiene enormes implicaciones para el ambiente de estudio de los exoplanetas. «La comunidad debe tener cuidado con ignorar mundos que están demasiado cerca de sus estrellas, como los mundos de tipo Venus», dice Way. Si algunas de las características clave, tales como la topografía de un exoplaneta y la velocidad de rotación, son justamente las correctas, entonces el borde interior de la zona habitable en un sistema solar —donde las condiciones propicias para la vida pueden surgir— estará más cerca de la estrella madre que lo que por lo general se piensa. El hallazgo es especialmente importante dado que se trata de mundos cercanos que son mucho más fáciles de observar, y definir sus características, que otros tipos de planetas. El muy esperado Telescopio Espacial James Webb —a menudo referido como el sucesor del Hubble—, por ejemplo, es probable que sólo estudiar mundos cercanos a sus estrellas, dejando las observaciones de los planetas con órbitas más amplias —como Marte o incluso la Tierra— fuera de la cuestión. O como Ravi Kopparapu, un astrónomo de la Universidad Estatal de Pensilvania, define: «Lo más cercano a la Tierra que podemos conseguir con el telescopio espacial James Webb es un Venus alrededor de estrellas frías.»

Pero Glaze no puede contener su entusiasmo sobre el último estudio debido a la información que aporta sobre un planeta rocoso cerca de casa. «Venus es el planeta de al lado, el hermano de al lado, y es muy sorprendente lo poco que sabemos», dice ella. «Conocemos Marte mucho más que Venus. Éstos [contando la Tierra] son los tres planetas terrestres de nuestro propio patio trasero. Si no entendemos estos tres planetas, y lo que los hace similares, y lo que los hace diferentes, vamos a estar en apuros para interpretar los nuevos planetas que estamos descubriendo fuera de nuestro Sistema Solar».

Afortunadamente, hay dos misiones a Venus actualmente en competencia para un potencial vuelo: una se trata de una misión geofísica para cartografiar el planeta en una resolución más alta que antes. La otra es una liderada por la propia Glaze, que mediría la composición de la atmósfera de Venus. Ambas podrían darnos mejor información sobre cómo se veía Venus en el pasado. «Todavía hay datos más importantes que tenemos que recoger con el fin de ajustar estos modelos, y tenemos la capacidad de recopilar esos datos ahora. Sólo necesitamos las misiones», dice Glaze.

Fuente: Scientific American. Aportado por Eduardo J. Carletti

Más información: